L-MolGAN: An improved implicit generative model for large molecular graphs

17 May 2021, Version 3
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Deep generative models are used to generate arbitrary molecular structures with the desired chemical properties. MolGAN is a renowned molecular generation models that uses generative adversarial networks (GANs) and reinforcement learning to generate molecular graphs in one shot. MolGAN can effectively generate a small molecular graph with nine or fewer heavy atoms. However, the graphs tend to become disconnected as the molecular size increase. This poses a challenge to drug discovery and material design, where large molecules are potentially inclusive. This study develops an improved MolGAN for large molecule generation (L-MolGAN). In this model, the connectivity of molecular graphs is evaluated by a depth-first search during the model training process. When a disconnected molecular graph is generated, L-MolGAN rewards the graph a zero score. This procedure decreases the number of disconnected graphs, and consequently increases the number of connected molecular graphs. The effectiveness of L-MolGAN is experimentally evaluated. The size and connectivity of the molecular graphs generated with data from the ZINC-250k molecular dataset are confirmed using MolGAN as the baseline model. The model is then optimized for a quantitative estimate of drug-likeness (QED) to generate drug-like molecules. The experimental results indicate that the connectivity measure of generated molecular graphs improved by 1.96 compared with the baseline model at a larger maximum molecular size of 20 atoms. The molecules generated by L-MolGAN are evaluated in terms of multiple chemical properties, QED, synthetic accessibility, and log octanol–water partition coefficient, which are important in drug design. This result confirms that L-MolGAN can generate various drug-like molecules despite being optimized for a single property, i.e., QED. This method will contribute to the efficient discovery of new molecules of larger sizes than those being generated with the existing method.

Keywords

deep learning
generative adversarial network
graph convolutional network
molecular graph

Supplementary materials

Title
Description
Actions
Title
Figure1
Description
Actions
Title
Figure2
Description
Actions
Title
Figure3
Description
Actions
Title
Figure4
Description
Actions
Title
Figure5
Description
Actions
Title
Figure6
Description
Actions
Title
Figure7
Description
Actions
Title
Figure8
Description
Actions
Title
Figure9
Description
Actions
Title
Figure10
Description
Actions
Title
ytsujimoto lmolgan ChemRxiv
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.