These are preliminary reports that have not been peer-reviewed. They should not be regarded as conclusive, guide clinical practice/health-related behavior, or be reported in news media as established information. For more information, please see our FAQs.
5 files

Kinetics and Pathways of the Aqueous Photolysis of Pharmaceutical Pollutants: A Versatile Laboratory or Remote Learning Investigation

submitted on 13.11.2020, 16:56 and posted on 16.11.2020, 09:18 by Jeffrey M. Buth, Rachele Ossola, Sarah B. Partanen, Kristopher McNeill, William Arnold, Meghan O’Connor, Douglas E. Latch

In this laboratory experiment, students explore the aquatic photochemical fate of ranitidine and cimetidine, two common wastewater-derived pharmaceutical pollutants. It provides an engaging environmental context for students to develop knowledge of reaction kinetics and photochemistry, as well as skill using analytical instrumentation. This versatile experiment consists of two basic modules, three optional advanced modules, and additional add-ons that may be performed in various combinations to meet the unique learning objectives of general, analytical, physical, and environmental chemistry courses and science outreach activities. It may be performed as a traditional lab experiment or as an entirely remote exercise with an increased focus on data analysis and interpretation using provided example data sets. All photolysis experiments are carried out by preparing solutions of ranitidine or cimetidine in various matrices, irradiating the samples, and periodically removing subsamples for HPLC analysis of the compound of interest. Pseudo-first-order kinetic plots are then generated to determine rate constants that are used to draw conclusions about photolysis pathways or to calculate additional kinetic parameters. In the two basic modules, cimetidine is found to degrade appreciably only when irradiated in the presence natural organic matter (NOM), indicating an indirect, photosensitized degradation pathway. In contrast, ranitidine degrades in pure buffer and in the presence of NOM with comparable rate constants, highlighting the predominant role of direct photolysis. In the advanced modules, students calculate ranitidine direct photolysis quantum yields and examine the significance of singlet oxygen as a photochemically produced reactive intermediate. The two basic modules may be completed in two three- to five-hour lab periods while the advanced modules require additional time. This experiment requires only a HPLC, inexpensive chemicals, and common glassware and lab equipment if performed in person, and a personal computer if performed remotely.


Email Address of Submitting Author





ORCID For Submitting Author


Declaration of Conflict of Interest

No conflicts of interest to declare