ChemRxiv
These are preliminary reports that have not been peer-reviewed. They should not be regarded as conclusive, guide clinical practice/health-related behavior, or be reported in news media as established information. For more information, please see our FAQs.
Accelerated ripening.pdf (22.51 MB)
0/0

Kinetic Control over Droplet Ripening in Fuel-Driven Active Emulsions

preprint
revised on 17.04.2020 and posted on 20.04.2020 by Marta Tena-Solsona, Jacqueline Janssen, Caren Wanzke, Fabian Schnitter, Hansol Park, Benedikt Rieß, Julianne M. Gibbs, Christoph A. Weber, Job Boekhoven
Active droplets are made of phase-separated molecules that are activated and deactivated by a metabolic reaction cycle. Such droplets play a crucial role in biology as a class of membrane-less organelles. Moreover, theoretical studies show that active droplets can evolve to the same size or spontaneously self-divide when energy is abundant. All of these exciting properties, i.e., emergence, decay, collective behavior, and self-division, are pivotal to the functioning of life. However, these theoretical predictions lack experimental systems to test them quantitively. Here, we describe the synthesis of synthetic active droplets driven by a metabolic chemical cycle and we find a surprising new behavior, i.e., the dynamics of droplet-growth is regulated by the kinetics of the fuel-driven reaction cycle. Consequently, these droplets ripen orders of magnitude faster compared to Ostwald ripening. Combining experiments and theory, we elucidate the underlying mechanism, which could help better understand how cells regulate the growth of membrane-less organelles.

Funding

Technical University of Munich – Institute for Advanced Study, funded by the German Excellence Initiative and the European Union Seventh Framework Programme under grant agreement n° 291763

European Union’s Horizon 2020 Research and Innovation program for the Marie Sklodowska Curie Fellowship under grant agreement n° 747007

German Research Foundation (DFG) through Transregional Collaborative Research Center (SFB/Transregio) 235 Project 16.

History

Email Address of Submitting Author

job.boekhoven@tum.de

Institution

Technical University of Munich

Country

Germany

ORCID For Submitting Author

0000-0002-9126-2430

Declaration of Conflict of Interest

No conflict of interest

Exports