ChemRxiv
These are preliminary reports that have not been peer-reviewed. They should not be regarded as conclusive, guide clinical practice/health-related behavior, or be reported in news media as established information. For more information, please see our FAQs.
Iterative_experimental_design_based_on_active_machine_learning_reduces_the_experimental_burden_associated_with_reaction_screening.pdf (1.24 MB)
0/0

Iterative Experimental Design Based on Active Machine Learning Reduces the Experimental Burden Associated with Reaction Screening

preprint
submitted on 11.06.2020 and posted on 18.06.2020 by Natalie Eyke, William H. Green, Klavs F. Jensen
High-throughput reaction screening has emerged as a useful means of rapidly identifying the influence of key reaction variables on reaction outcomes. We show that active machine learning can further this objective by eliminating dependence on complete screens through iterative selection of maximally informative experiments from the subset of all possible experiments in the domain. To demonstrate our approach, we conduct retrospective analyses of the preexisting results of high-throughput reaction screening experiments. We compare the test set errors of models trained on actively-selected reactions to models trained on reactions selected at random from the same domain. We find that the degree to which models trained on actively-selected data outperform models trained on randomly-selected data depends on the domain being modeled, with it being possible to achieve very low test set errors when the dataset is heavily skewed in favor of low- or zero-yielding reactions. Our results confirm that the active learning algorithm is a useful experiment planning tool that can change the reaction screening paradigm, by allowing discovery and process chemists to focus their reaction screening efforts on the generation of a small amount of high-quality data.

History

Email Address of Submitting Author

neyke@mit.edu

Institution

Massachusetts Institute of Technology

Country

United States of America

ORCID For Submitting Author

0000-0003-1864-6857

Declaration of Conflict of Interest

There are no conflicts of interest to declare.

Exports