Isoreticular Linker Substitution in Conductive Metal–Organic Frameworks with Through-Space Transport Pathways

01 April 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

The extension of reticular chemistry concepts to electrically conductive three-dimensional metal-organic frameworks (MOFs) has been challenging, particularly for cases in which strong interactions between electroactive linkers create the charge transport pathways. Here, we report the successful replacement of tetrathiafulvalene (TTF) with a nickel glyoximate core in a family of isostructural conductive MOFs with Mn2+, Zn2+, and Cd2+. Different coordination environments of the framework metals lead to variations in the linker stacking geometries and optical properties. Single crystal conductivity data are consistent with charge transport along the linker stacking direction, with conductivity values only slightly lower than those reported for the analogous TTF materials. These results serve as a case study demonstrating how reticular chemistry design principles can be extended to conductive frameworks with significant intermolecular contacts.

Keywords

metal-organic frameworks
electrical conductivity
reticular chemistry
pi-pi stacking

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.