ChemRxiv
These are preliminary reports that have not been peer-reviewed. They should not be regarded as conclusive, guide clinical practice/health-related behavior, or be reported in news media as established information. For more information, please see our FAQs.
1/1
0/0

Isonitrile Ruthenium and Iron PNP Complexes: Synthesis, Characterization and Catalytic Assessment for Base-Free Dehydrogenative Coupling of Alcohols

preprint
revised on 03.06.2020 and posted on 04.06.2020 by Duc Hanh Nguyen, Delphine Merel, Nicolas Merle, Xavier Trivelli, Frederic Capet, Regis Gauvin
Neutral and ionic ruthenium and iron aliphatic PNPH-type pincer complexes (PNPH= NH(CH2CH2PiPr2)2) bearing benzyl, n-butyl or tert-butyl isocyanide ancillary ligands have been prepared and characterized. Reaction of [RuCl2(PNPH)]2 with one equivalent CN-R per ruthe-nium center affords complexes [Ru(PNPH)Cl2(CNR)] (R= benzyl, 1a, R= n-butyl, 1b, R= t-butyl, 1c), with cationic [Ru(PNPH)(Cl)(CNR)2]Cl 2a-c as side-products. Complexes 2a-c are selectively prepared upon reaction of [RuCl2(PNPH)]2 with 2 equiva-lents of isonitrile per ruthenium center. Dichloride species 1a-c react with excess NaBH4 to afford [Ru(PNPH)(H)(BH4)(CN-R)] 3a-c, analogues to benchmark Takasago catalyst [Ru(PNP)(H)(BH4)(CO)]. Reaction of 1a-c with a single equivalent of NaBH4 under protic conditions results in formation of hydrido chloride derivatives [Ru(PNPH)(H)(Cl)(CN-R)] (4a-c), from which 3a-c can be prepared upon reaction with excess NaBH4. Use of one equivalent of NaHBEt3 with 4a and 4c affords bishydrides [Ru(PNPH)(H)2(CN-R)] 5a and 5c. In the case of bulkier t-butylisonitrile, two isomers were observed by NMR, with the PNP framework in either meridional or facial confor-mation. Deprotonation of 4c by KOtBu generates amido derivative [Ru(PNP’)(H)(CN-t-Bu)] (6, PNP’= -N(CH2CH2PiPr2)2), unstable in solution. Addition of excess benzylisonitrile to 4a provides cationic hydride [Ru(PNPH)(H)(CN-CH2Ph)2]Cl (7). Concerning iron chemis-try, [Fe(PNPH)Br2] reacts one equivalent benzylisonitrile to afford [Fe(PNPH)(Br)(CNCH2Ph)2]Br (8). The outer-sphere bromide anion can be exchanged by salt metathesis with NaBPh4 to generate [Fe(PNPH)(Br)(CNCH2Ph)2](BPh4) (9). Cationic hydride species [Fe(PNPH)(H)(CN-t-Bu)2](BH4) (10) is prepared from consecutive addition of excess CN-t-Bu and NaBH4 on [Fe(PNPH)Br2]. Ruthenium complexes 3a-c are active in acceptorless alcohol dehydrogenative coupling into ester under base-free conditions. From kinetic follow-up, the trend in initial activity is 3a ≈ 3b > [Ru(PNPH)(H)(BH4)(CO)] >> 3c; for robustness, [Ru(H)(BH4)(CO)(PNPH)] > 3a > 3b >> 3c. Hy-potheses are given to account for the observed deactivation. Complexes 3b, 3c, 4a, 4c, 5c, 7, cis-8 and 9 were characterized by X-ray crystallography.

History

Email Address of Submitting Author

regis.gauvin@chimieparistech.psl.eu

Institution

Chimie ParisTech, PSL University, CNRS, Institut de Recherche de Chimie Paris

Country

France

ORCID For Submitting Author

0000-0002-4788-4363

Declaration of Conflict of Interest

no conflict of interest

Exports

Logo branding

Exports