Intra- and Intermolecular Interception of a Photochemically Generated Terminal Uranium Nitride

03 December 2019, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

The photochemically generated synthesis of a terminal uranium nitride species is here reported and an examination of its intra- and intermolecular chemistry is presented. Treatment of the U(III) complex LArUI(DME) ((LAr)2-= 2,2”-bis(Dippanilide)-p-terphenyl; Dipp = 2,6-diisopropylphenyl) with LiNImDipp ((NImDipp)= 1,3-bis(Dipp)-imidaozolin-2-iminato) generates the sterically congested 3N-coordinate compound LArU(NImDipp) (1). Complex 1reacts with 1 equiv of Ph3CN3to give the U(IV) azide LArU(N3)(NImDipp) (2). Structural analysis of 2reveals inequivalent Nα-Nβ> Nβ-Nγdistances indicative of an activated azide moiety predisposed to N2loss. Room-temperature photolysis of benzene solutions of 2affords the U(IV) amide (N-LAr)U(NImDipp) (3) via intramolecular N-atom insertion into the benzylic C-H bond of a pendant isopropyl group of the (LAr)2- ligand. The formation of 3occurs as a result of the intramolecular interception of the intermediately generated, terminal uranium nitride (LAr)U(N)(NImDipp) (3’). Evidence for the formation of 3’is further bolstered by its intermolecular capture, accomplished by photolyzing solutions of 2in the presence of an isocyanide or PMe3to give (LAr)U[NCN(C6H3Me2)](NImDipp) (5) and (N,C-LAr*)U(N=PMe3)(NImDipp) (6), respectively. These results expand upon the limited reactivity studies of terminal uranium-nitride moieties and provide new insights into their chemical properties.

Keywords

uranium nitride

Supplementary materials

Title
Description
Actions
Title
#U Nitride C-H Activation - SI - 2019 10 12 SF
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.