These are preliminary reports that have not been peer-reviewed. They should not be regarded as conclusive, guide clinical practice/health-related behavior, or be reported in news media as established information. For more information, please see our FAQs.
2 files

Instructed-Assembly as Context-Dependent Nanoscale Signals for Death and Morphogenesis of Cells

submitted on 12.01.2019, 16:22 and posted on 14.01.2019, 16:55 by Huaimin Wang, Zhaoqianqi Feng, Bing Xu
Context-dependent signaling, as a ubiquitous phenomenon in nature, is a dynamic molecular process at nano- and microscales, but how to mimic its essence using non-covalent synthesis in cellular environment has yet to be developed. Here we show a dynamic continuum of non-covalent filaments formed by instructed-assembly (iA) of a supramolecular phosphoglycopeptide (sPGP) as context-dependent signals for controlling death and morphogenesis of cells. Specifically, while enzymes (i.e., ectophosphatases) on cancer cells catalyze the formation of the filaments of the sPGP to result in cell death, damping the enzyme activity induces 3D cell spheroids. Similarly, relying on the ratio of stromal and cancer cells in a co-culture to modulate the expression of the ectophosphatase, the iA process enables cell spheroids. The spheroids act as a mimic of tumor microenvironment for drug screening. As the first demonstration of iA as multifunctional processes according to local enzyme activity for controlling cell behavior, this work illustrates context-dependent biological functions of non-covalent synthesis in cellular environment.


Email Address of Submitting Author


Brandeis university



ORCID For Submitting Author


Declaration of Conflict of Interest

The authors declare no competing financial interests