These are preliminary reports that have not been peer-reviewed. They should not be regarded as conclusive, guide clinical practice/health-related behavior, or be reported in news media as established information. For more information, please see our FAQs.
2 files

Influence of Sub-angstrom Change in Interstitial Ion Size on Clay Swelling

submitted on 02.10.2020, 08:39 and posted on 05.10.2020, 10:33 by Sai Adapa, Ateeque Malani
Clay minerals in contact with aqueous bulk reservoir undergo a geological transformation of swelling or shrinking by exchanging interstitial cations. For geological applications, it is crucial to understand the stability of these layered materials. Here, we demonstrate that a sub-angstrom change in the interstitial cation size with similar hydration characteristics is enough to destabilize the optimum spacing of layered materials. We used molecular simulations to investigate the stability of water layers in the K-, Rb-, and Cs-mica pores. We find that ±0.1 Å, change in the size of interstitial cation - from Rb+ to K+ or Cs+ ion - leads to -15 to 5 % change in equilibrium loading of adsorbed water and 2 to 35 % change in interlayer spacing. Our thermodynamic analysis reveals an intricate interplay between enthalpic and entropic contributions caused by the structural change of water in the pores due to the hydration of interstitial cations. The understanding from this work has direct implications in designing clay swelling inhibitors in the oil/gas recovery using fracking and sealing materials for radioactive waste.


Email Address of Submitting Author


Indian Institute of Technology Bombay



ORCID For Submitting Author


Declaration of Conflict of Interest

No conflict of interest