In-silico FDA-approved drug repurposing to find the possible treatment of Coronavirus Disease-19 (COVID-19)

Kumar Sharp¹, Dr. Shubhangi Dange²*

¹²nd MBBS undergraduate student, Government Medical College and Hospital, Jalgaon
²Associate Professor, Dept. of Microbiology, Government Medical College and Hospital, Jalgaon

*Corresponding author: -
Dr. Shubhangi Dange,
Associate Professor,
Department of Microbiology,
Government Medical College and Hospital, Jalgaon
Email: dangeshubhangi@gmail.com

Abstract
Identification of potential drug-target interaction for approved drugs serves as the basis of repurposing drugs. Studies have shown polypharmacology as common phenomenon. In-silico approaches help in screening large compound libraries at once which could take years in a laboratory. We screened a library of 1050 FDA-approved drugs against spike glycoprotein of SARS-CoV2 in-silico. Anti-cancer drugs have shown good binding affinity which is much better than hydroxychloroquine and arbidol. We have also introduced a hypothesis named “Bump” hypothesis which and be developed further in field of computational biology.

Keywords: spike glycoprotein; FDA; drug repurposing; anti-cancer; hydroxychloroquine

Introduction
Identification of potential drug-target interaction for approved drugs serves as the basis of repurposing drugs. Studies have shown polypharmacology as common phenomenon.¹² Since the three-dimensional structures of proteins of SARS-CoV2 have been mapped it opens opportunity for in-silico approaches of either novel drug discovery or drug repurposing. In the absence of an exact cure or vaccine, coronavirus disease-19 has taken a huge toll of humanity. Our study of target specific drug docking and novel hypothesis contributes in this fight. In-silico approaches help in screening large compound libraries at once which could take years in a laboratory. This accelerates the process of drug discovery which can then be specifically to laboratory studies and thus save time, cost and resources which are crucial in such situation of a pandemic.
Methodology:

The three-dimensional structure of receptor-binding domain (RBD) of spike glycoprotein of SARS-CoV2 and angiotensin-converting enzyme ACE 2 receptor complex 6M0J was obtained from Protein Data Bank [3] (Figure 1). Chain A is ACE 2 receptor and chain E is RBD. The active sites were derived from the article by Lan et al [4]. As mentioned, 15 target amino acid sites of chain E which help in binding with chain A would be our target amino acids.

![Three-dimensional structure of spike glycoprotein RBD chain E and ACE2 receptor chain A complex 6M0J. Chain E is coloured orange and chain A is coloured green.](image)

Figure 1: Three-dimensional structure of spike glycoprotein RBD chain E and ACE2 receptor chain A complex 6M0J. Chain E is coloured orange and chain A is coloured green.

These 15 amino acid targets along with their position in the sequence is as follows:

1. Tyr449
2. Tyr453
3. Asn487
4. Tyr489
5. Gly496
6. Thr500
7. Gly502
8. Tyr505
9. Leu455
10. Phe456
11. Phe486
12. Gln493
13. Asn501
14. Gln498
15. Lys417
The above standard abbreviations are: Tyr: Tyrosine; Asn: Asparagine; Gly: Glycine; Thr: Threonine; Leu: Leucine; Phe: Phenylalanine; Gln: Glutamine; Lys: Lysine.

The last amino acid Lys417 helps in salt-bridge formation between chain E and A and is believed to be the reason for strong binding affinity as this was absent in SARS-CoV. Leu455, Phe486, Gln493 and Asn501 are the amino acids in SARS-CoV2 whose corresponding amino acids in SARS-CoV were important in binding. The above 5 amino acids will be our preferences when selecting results among docked drugs.

1050 FDA-approved drug structures were obtained from Zinc15 database [5]. Arbidol and hydroxychloroquine structures were also taken separately for analysis because of their role to prevent virus entry into the cell [6]. The docking software used in this study is PyRx virtual screening tool because of its user-friendly graphical user-interface and inclusion of Autodock Vina and Open Babel within its environment [7][8][9]. These programs are necessary for preparation of ligand and receptor before docking and the docking itself.

After obtaining the necessary conditions like three-dimensional structure of receptor, ligand structure database and target amino acids, docking was proceeded with PyRx. The receptor complex 6M0J was loaded and only chain E was extracted from the structure. The chain E was converted to Autodock macromolecule by automatic removal of water molecules, addition of hydrogen atoms and addition of partial charges. The drug structures were loaded in PyRx Open Babel plug-in. All drug structures were minimized to have the least conformational energy. The minimized structures were then converted into Autodock ligands by automatic addition of hydrogen atoms and addition of partial charges to the system.

The Vina search space was set in PyRx so as to included all 15 target amino acids (figure 2). The co-ordinate data of the search space is as follows:

center_x = -36.6861
center_y = 28.5454
center_z = 3.8350
size_x = 19.2344
size_y = 39.4447
size_z = 21.2095

The docking was proceeded with maximum exhaustiveness of 8 modes. The study was conducted on a Windows 10 64-bit operating system. The entire docking took about 11 hours with 100% CPU utilization.
The results obtained were then sorted in increasing order of binding energy in kcal/mol (kilocalorie per mole) since lower the binding affinity value stronger is the binding between ligand and receptor. Only modes with zero root mean square deviation were considered to obtain the best docking possible. The results were evaluated till a binding affinity of -7.5 kcal/mol.

All ligand-receptor interactions were visualized using Drug Discovery Studio [10]. The two-dimensional diagrams of all the result ligand interactions with the receptor were obtained. The receptor refers to chain E or the receptor-binding domain of the spike glycoprotein. The amino acid with which interactions occur were noted.

Filter of results to choose the best drug candidate was done on basis of two inclusion criteria:

1. How many of the desired target amino acids did that drug interact with?
2. How many of the preferred 5 target amino acids did that drug interact with?

Any drug interaction which was determined to be unfavourable was removed from the study and hence constituted the exclusion criteria. According to the above two conditions, the result drugs were sorted in decreasing order of number of interactions. A final list of potential drug candidates was prepared according to the above two filter results. These drug candidates were then visualized in Drug Discovery Studio to show unfavourable binding to chain A i.e. ACE2 receptor and thus proving the effectiveness of the drug when it is bond to RBD.
The above methodology is summarized as follows:

1. Obtaining three-dimensional structures of receptor and ligands from the databases
2. Determining active site amino acid residues in the receptor
3. Preparation of receptor and ligand for docking
4. Docking of ligands to the receptor within restricted search space of target amino acids
5. Sorting of result on basis of binding affinity, interactions, inclusion and exclusion criteria.
6. Final potential drug candidates obtained.
Results:

Molecular docking between FDA-approved drug ligands and chain E of 6M0J was completed and results were sorted in increasing order of binding energy till -7.5 kcal/mol. Only RMSD value of zero results were considered as they indicated the best binding conformation as compared to other modes. The results obtained are in the table below (Table 1):

<table>
<thead>
<tr>
<th>Ligand receptor complex</th>
<th>Binding Affinity (kcal/mol)</th>
<th>Name (as per Zinc15 database)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6m0j_E_ZINC000027990463_uff_E=654.95</td>
<td>-8.2</td>
<td>lomitapide</td>
</tr>
<tr>
<td>6m0j_E_ZINC000052955754_uff_E=965.09</td>
<td>-8.2</td>
<td>ergotamine</td>
</tr>
<tr>
<td>6m0j_E_ZINC000006716957_uff_E=651.98</td>
<td>-8.2</td>
<td>nilotinib</td>
</tr>
<tr>
<td>6m0j_E_ZINC000003978005_uff_E=940.58</td>
<td>-8.1</td>
<td>dihydroergotamine</td>
</tr>
<tr>
<td>6m0j_E_ZINC000029416466_uff_E=554.86</td>
<td>-8</td>
<td>saquinavir</td>
</tr>
<tr>
<td>6m0j_E_ZINC0000666166864_uff_E=877.49</td>
<td>-8</td>
<td>alectinib</td>
</tr>
<tr>
<td>6m0j_E_ZINC000026664090_uff_E=535.51</td>
<td>-7.9</td>
<td>saquinavir</td>
</tr>
<tr>
<td>6m0j_E_ZINC000036701290_uff_E=764.28</td>
<td>-7.8</td>
<td>ponatinib</td>
</tr>
<tr>
<td>6m0j_E_ZINC000068153186_uff_E=1005.56</td>
<td>-7.8</td>
<td>dabrafenib</td>
</tr>
<tr>
<td>6m0j_E_ZINC000068204830_uff_E=1113.83</td>
<td>-7.7</td>
<td>daclatasvir</td>
</tr>
<tr>
<td>6m0j_E_ZINC000003817234_uff_E=983.51</td>
<td>-7.7</td>
<td>celsentri</td>
</tr>
<tr>
<td>6m0j_E_ZINC00019632618_uff_E=489.47</td>
<td>-7.7</td>
<td>imatinib</td>
</tr>
<tr>
<td>6m0j_E_ZINC000049036447_uff_E=1212.85</td>
<td>-7.6</td>
<td>sivorexant</td>
</tr>
<tr>
<td>6m0j_E_ZINC00000896717_uff_E=1163.37</td>
<td>-7.6</td>
<td>accolate</td>
</tr>
<tr>
<td>6m0j_E_ZINC00012503187_uff_E=1067.62</td>
<td>-7.6</td>
<td>conivaptan</td>
</tr>
<tr>
<td>6m0j_E_ZINC00035328014_uff_E=725.43</td>
<td>-7.5</td>
<td>ibritinib</td>
</tr>
<tr>
<td>6m0j_E_ZINC00084668739_uff_E=1140.66</td>
<td>-7.5</td>
<td>lifitegrast</td>
</tr>
<tr>
<td>6m0j_E_ZINC00095551509_uff_E=4776.36</td>
<td>-7.5</td>
<td>grazoprevir</td>
</tr>
<tr>
<td>6m0j_E_ZINC00000538312_uff_E=544.51</td>
<td>-7.5</td>
<td>risperdal</td>
</tr>
<tr>
<td>6m0j_E_ZINC00001542113_uff_E=741.62</td>
<td>-7.5</td>
<td>vilazodone</td>
</tr>
<tr>
<td>6m0j_E_ZINC0001996117_uff_E=701.60</td>
<td>-7.5</td>
<td>darifenacin</td>
</tr>
<tr>
<td>6m0j_E_ZINC00003816287_uff_E=509.48</td>
<td>-7.5</td>
<td>axitinib</td>
</tr>
<tr>
<td>6m0j_E_ZINC00003881958_uff_E=3.2e+265</td>
<td>-7.5</td>
<td>danol</td>
</tr>
<tr>
<td>6m0j_E_ZINC00011681534_uff_E=315.75</td>
<td>-7.5</td>
<td>nebivolol</td>
</tr>
<tr>
<td>Arbidol 19907652</td>
<td>-6</td>
<td>arbidol</td>
</tr>
<tr>
<td>HCQ 1530652</td>
<td>-5.7</td>
<td>hydroxychloroquine</td>
</tr>
</tbody>
</table>

Table 1: Results of docking as per binding affinity till -7.5 kcal/mol.
The ligand interactions of all the above structures were analysed in Drug Discovery Studio and the following results was obtained as given in Table 2. The interactions of ligands are mentioned with standard amino acid abbreviations and if any unfavourable interactions the ligand is marked in red and its interactions are not considered.

<table>
<thead>
<tr>
<th>Ligand receptor complex</th>
<th>Binding Affinity</th>
<th>Interactions</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>6m0j_E_ZINC000027990 463_uff_E=654.95</td>
<td>-8.2</td>
<td>1. UNFAVOURABLE lomitapide</td>
<td></td>
</tr>
<tr>
<td>6m0j_E_ZINC000052955 754_uff_E=965.09</td>
<td>-8.2</td>
<td>2. tyr505; gly496; arg403</td>
<td>ergotamine</td>
</tr>
<tr>
<td>6m0j_E_ZINC00006716 957_uff_E=651.98</td>
<td>-8.2</td>
<td>3. thr500; tyr449; tyr453; ser494; tyr495; gln493; arg403; gly496</td>
<td>nilotinib</td>
</tr>
<tr>
<td>6m0j_E_ZINC000003978 005_uff_E=940.58</td>
<td>-8.1</td>
<td>4. UNFAVOURABLE dihydroergotamine</td>
<td></td>
</tr>
<tr>
<td>6m0j_E_ZINC000029416 466_uff_E=554.86</td>
<td>-8</td>
<td>5. UNFAVOURABLE saquinavir</td>
<td></td>
</tr>
<tr>
<td>6m0j_E_ZINC000006166 864_uff_E=877.49</td>
<td>-7.9</td>
<td>6. tyr505; arg403; tyr453; lys417</td>
<td>alectinib</td>
</tr>
<tr>
<td>6m0j_E_ZINC000026664 090_uff_E=535.51</td>
<td>-7.8</td>
<td>7. gly496; tyr505; tyr453; gln493; arg403; leu455</td>
<td>saquinavir</td>
</tr>
<tr>
<td>6m0j_E_ZINC000036701 290_uff_E=764.28</td>
<td>-7.8</td>
<td>8. leu455; gln493; tyr495; tyr505; phe497; arg403; gly496; gln498; asn501</td>
<td>ponatinib</td>
</tr>
<tr>
<td>6m0j_E_ZINC000068153 186_uff_E=1005.56</td>
<td>-7.8</td>
<td>9. lys417; tyr453; tyr449; gln493; tyr505; gly496; asn501</td>
<td>dabrafenib</td>
</tr>
<tr>
<td>6m0j_E_ZINC000068204 830_uff_E=1113.83</td>
<td>-7.7</td>
<td>10. tyr489; phe456; leu455; tyr453; tyr495; arg403; gly496</td>
<td>daclatasvir</td>
</tr>
<tr>
<td>6m0j_E_ZINC000003817 234_uff_E=983.51</td>
<td>-7.7</td>
<td>11. gln493; leu455; tyr453; glu406; lys417</td>
<td>celsentri</td>
</tr>
<tr>
<td>6m0j_E_ZINC000019632 618_uff_E=489.47</td>
<td>-7.7</td>
<td>12. thr500; gln493; gly496; tyr505; glu484</td>
<td>imatinib</td>
</tr>
<tr>
<td>6m0j_E_ZINC000049036 447_uff_E=1212.85</td>
<td>-7.6</td>
<td>13. tyr505; arg403; tyr453; lys417; ser494</td>
<td>suvorexant</td>
</tr>
<tr>
<td>6m0j_E_ZINC000000896 717_uff_E=1163.37</td>
<td>-7.6</td>
<td>14. gln493; tyr453; tyr449; lys417; tyr505; phe497; arg403; tyr495</td>
<td>accolate</td>
</tr>
<tr>
<td>6m0j_E_ZINC000012503 187_uff_E=1067.62</td>
<td>-7.6</td>
<td>15. lys417; leu455; tyr449; tyr453</td>
<td>conivaptan</td>
</tr>
<tr>
<td>6m0j_E_ZINC000035328 014_uff_E=725.43</td>
<td>-7.5</td>
<td>16. arg403; tyr453; lys417; tyr449; ser494</td>
<td>ibrutinib</td>
</tr>
<tr>
<td>6m0j_E_ZINC000084668 739_uff_E=1140.66</td>
<td>-7.5</td>
<td>17. gly496; ser494; gln493; phe456; tyr489; leu455</td>
<td>lifitegrast</td>
</tr>
<tr>
<td>6m0j_E_ZINC000095551 509_uff_E=4776.36</td>
<td>-7.5</td>
<td>18. tyr453; gln493; ser494; tyr505; arg403; tyr449; leu455</td>
<td>grazoprevir</td>
</tr>
<tr>
<td>6m0j_E_ZINC000000538 312_uff_E=544.51</td>
<td>-7.5</td>
<td>19. gly496; tyr505</td>
<td>risperdal</td>
</tr>
<tr>
<td>6m0j_E_ZINC000001542 113_uff_E=741.62</td>
<td>-7.5</td>
<td>20. gly496; leu455; tyr505; gln493; glu484; phe490</td>
<td>vilazodone</td>
</tr>
</tbody>
</table>
Table 2: Ligand interactions as visualized in Drug Discovery Studio. Any ligand showing unfavourable interaction is marked in red.

The interaction results now obtained are filtered on the basis of the number of desired target amino acids. Ligands also interact with other amino acids in the search space hence the count is on the basis of the 15 target amino acids as mentioned earlier. The top 10 drugs are as follows:

1. Dabrafenib-7/15
2. Ponatinib-6/15
3. Nebivolol-6/15
4. Nilotinib-5/15
5. Saquinavir-5/15
6. Daclatasvir-5/15
7. Accolate-5/15
8. Grazoprevir-5/15
9. Celsentri-4/15
10. Imatinib-4/15

The interaction results were then filtered on the basis of the number of preferred 5 amino acid targets as mentioned above. The top 10 drugs are as follows:

1. Pontatinib-3/5
2. Dabrafenib-3/5
3. Celsentri-3/5
4. Saquinavir-2/5
5. Accolate-2/5
6. Conivaptan-2/5
7. Lifitegrast-2/5
8. Grazoprevir-2/5
9. Vilazodone-2/5
10. Nilotinib-1/5
The scores in the above two lists indicate: number of amino acid as per condition/total number of amino acids to be considered as per condition. They are arranged in decreasing order. In case they have the same results, they are sorted amongst themselves in order of binding affinity as per table 1 in increasing order.

On the basis of the above two lists the top 5 final drug candidates chosen are:

1. Dabrafenib (figure 3 and 9)
2. Ponatinib (figure 4 and 10)
3. Nilotinib (figure 5 and 11)
4. Saquinavir (figure 6 and 12)
5. Accolate (figure 7 and 13)

Their structures and drug interactions are shown below:

Figure 3: Dabrafenib (2D structure) in interaction with amino acids of chain E (circles with sequence position of that amino acid). Green bonds are the conventional hydrogen bonds. Pi-alkyl bonds are depicted in pink. Pi-sulphur bonds are depicted in yellow. Pi-donor hydrogen bond is depicted in light blue.
Figure 4: Ponatinib (2D structure) in interaction with amino acids of chain E (circles with sequence position of that amino acid). Green bonds are the conventional hydrogen bonds. Pi-alkyl and alkyl bonds are depicted in pink. Pi-Pi T shaped bonds are depicted in magenta. Halogen bond is depicted in blue. Carbon-Hydrogen bonds are depicted in light blue.

Figure 5: Nilotinib (2D structure) in interaction with amino acids of chain E (circles with sequence position of that amino acid). Green bonds are the conventional hydrogen bonds. Pi-alkyl bonds are depicted in pink. Halogen bond is depicted in blue. Carbon-Hydrogen and Pi-donor hydrogen bonds are depicted in light blue.
Figure 6: Saquinavir (2D structure) in interaction with amino acids of chain E (circles with sequence position of that amino acid). Green bonds are the conventional hydrogen bonds. Pi-Pi T shaped bonds are depicted in magenta. Pi-sigma bond is depicted in purple. Pi-donor hydrogen bonds are depicted in light blue.

Figure 7: Accolate (2D structure) in interaction with amino acids of chain E (circles with sequence position of that amino acid). Green bonds are the conventional hydrogen bonds. Pi-Pi T shaped and Pi-Pi stacked bonds are depicted in magenta. Pi-donor hydrogen and carbon hydrogen bonds are depicted in light blue. Alkyl and Pi-alkyl bonds are depicted in pink.
An interaction figure of lomitapide (from table 2) is also shown as an example of unfavourable interaction below (figure 8 and 14):

Figure 8: Lomitapide (2D structure) in interaction with amino acids of chain E (circles with sequence position of that amino acid). Green bonds are the conventional hydrogen bonds. Pi-Pi stacked bonds are depicted in magenta. Halogen bonds are depicted in blue. Alkyl and Pi-alkyl bonds are depicted in pink. Unfavourable positive-positive bond is depicted in red.

The 2-dimensional structure of the drugs from Zinc15 database is shown below:

Figure 9: Dabrafenib Figure 10: Ponatinib
Discussion

With the results obtained above, we find that hydroxychloroquine which is the prevalent treatment for novel coronavirus 2019 has the lowest affinity of -5.7 kcal/mol as well as unfavourable interactions. Arbidol which also is used to prevent viral entry has less binding affinity that other compounds which we found. Dabrafenib is approved for cancer with BRAF gene mutation. It has shown MERS-CoV: 45% inhibition at 10 micromolar concentration [11]. Ponatinib is used for treatment of chronic myelogenous leukemia, acute lymphocytic leukemia. It is a tyrosine kinase inhibitor and has also been shown to act on 2019-nCoV main protease [12]. Thus, this drug can affect dual targets of spike glycoprotein and main protease of the coronavirus. Nilotinib which is also used for treatment of chronic myelogenous leukemia has shown to inhibit MERS-CoV at 5.5 micromolar and SARS-CoV at 2.1 micromolar concentration [13]. Saquinavir is a drug used in anti-retroviral therapy has been shown to produce anti-viral activity against SARS-CoV2 in a study conducted in Shanghai [14]. Accolate is the tradename for zafirlukast which is a leukotriene receptor antagonist which is one among the drugs in a United Sates patent of human rhinovirus antibodies as a second therapeutic agent or antibody [15]. The results we have obtained above must be proceeded for in-vitro and in-vivo screening due to limitations of in-silico screening. The ligand and protein models used for in-silico study are strictly rigid unlike when present in biological systems. Multi-drug combination studies cannot be done in-silico [16]. Yet, the results we have obtained are very encouraging to proceed with. While analysing the results we also formed a hypothesis. The hypothesis is: “A drug attaches itself to the spike glycoprotein(ligand) and forms favourable bond with it. When this drug-ligand complex approaches the receptor, unfavourable bumps between the drug and receptor prevents binding of ligand and creates
repulsion. This prevents the binding of ligand and receptor and thus prevents the entry of the virus inside the cell.” We named this hypothesis as the “Bump” hypothesis. A word of caution to prevent confusion, the drugs we consider for this hypothesis don’t form unfavourable bonds with spike glycoprotein, example lomitapide in figure 8. The drugs like dabrafenib, ponatinib, nilotinib, saquinavir and accolate from favourable bonds with spike glycoprotein and unfavourable bonds in that position with ACE2 receptor. One such example is shown below in figure 15.

Figure 15: Dabrafenib (2D structure) in interaction with amino acids of chain E (circles with sequence position of that amino acid) and chain A (circles with sequence position of that amino acid). Green bonds are the conventional hydrogen bonds. Pi-alkyl bonds are depicted in pink. Pi-sulphur bonds are depicted in yellow. Pi-donor hydrogen bond is depicted in light blue. Unfavourable bonds are depicted in red with the interacting amino acid sequence.
We have illustrated our hypothesis in the below drawings:

Figure 16: A typical ligand-receptor interaction in absence of drugs. Active sites are indicated by projections from surfaces of both ligand and receptor.

Figure 17: A drug interacts with the ligand and cover its active sites forming favourable interactions between them. This ligand-drug complex then approaches the receptor.
Figure 18: The ligand-drug complex approaches the target receptor for interaction. The drug has however covered most of the active sites of the ligand and the presence of drug is producing unfavourable bumps or repulsion cloud from the receptor. This overall minimizes the interaction and further action example viral entry fails.

Figure 19: This illustration depicts a drug which binds to an allosteric site of ligand, yet the docking of ligand and receptor occurred failing its very purpose. This is one of the limitations of in-silico drug screening where models are strictly rigid and don’t change their conformation unlike the case of allosteric/non-competitive inhibition in biological systems. Our above hypothesis requires further work to improve but the drugs we propose by in-silico screening must definitely be forwarded for in laboratory analysis.
Conclusion
In this study we have screened a large library of FDA-approved drugs and put forth promising results. We have highlighted the efficiency as well as limitations of in-silico screening. A critical hypothesis is also proposed which might stir further interest of computational biology. At times of this ongoing pandemic, our study might contribute in the fight against coronavirus. Our results though encouraging, must be tested in laboratory before proceeding with human trials and public use.

Source of funding: Nil

Ethical approval: Not required

Conflict of interest: The authors hereby declare no conflict of interests.

Contribution: All authors have equally contributed in the study.

References:
clinically developed drugs for treatment of Middle East respiratory syndrome coronavirus infection. Antimicrobial agents and chemotherapy. 2014 Aug 1;58(8):4885-93.

