These are preliminary reports that have not been peer-reviewed. They should not be regarded as conclusive, guide clinical practice/health-related behavior, or be reported in news media as established information. For more information, please see our FAQs.
2 files

Impact of surface hydroxylation in MgO-/SnO-nanocluster modified TiO2 anatase (101) composites on visible light absorption, charge separation and reducibility.

submitted on 27.09.2017, 15:36 and posted on 12.10.2017, 11:59 by Michael Nolan, Stephen Rhatigan
Surface modification with metal oxide nanoclusters has emerged as a candidate for the enhancement of the photocatalytic activity of titanium dioxide. An increase in visible light absorption and the suppression of charge carrier recombination are necessary to improve the efficiency. We have studied Mg4O4 and Sn4O4 nanoclusters modifying the (101) surface of anatase TiO2 using density functional theory corrected for on-site Coulomb interactions (DFT + U). Such studies typically focus on the pristine surface, free of the point defects and surface hydroxyls present in real surfaces. We have also examined the impact of partial hydroxylation of the anatase surface on a variety of outcomes such as nanocluster adsorption, light absorption, charge separation and reducibility. Our results indicate that the modifiers adsorb strongly at the surface, irrespective of the presence of hydroxyl groups, and that modification extends light absorption into the visible range while enhancing UV activity. Our model for the excited state of the heterostructures demonstrates that photoexcited electrons and holes are separated onto the TiO2 surface and metal oxide nanocluster respectively. Comparisons with bare TiO2 and other TiO2-based photocatalyst materials are presented throughout.


SFI 14/US/E2915



  • Catalysts
  • Composites

Email Address of Submitting Author

Email Address(es) for Other Author(s)


Tyndall National Institute, University College Cork



ORCID For Submitting Author


Declaration of Conflict of Interest

No conflict of interest