ChemRxiv
These are preliminary reports that have not been peer-reviewed. They should not be regarded as conclusive, guide clinical practice/health-related behavior, or be reported in news media as established information. For more information, please see our FAQs.
1/1
0/0

Impact of Surface Modification on the Li, Na, and K Intercalation Efficiency and Capacity of Few-Layer Graphene Electrodes

preprint
submitted on 21.12.2019 and posted on 23.12.2019 by Nijamudheen Abdulrahiman, Dipobrato Sarbapalli, Jingshu Hui, Joaquín Rodríguez-López, Jose Mendoza-Cortes

In a conventional lithium ion battery (LIB), graphite forms the negative electrode or anode. Although Na is considered one of the most attractive alternatives to Li, achieving reversible Na intercalation within graphitic materials under ambient conditions remains a challenge. More efficient carbonaceous anode materials are desired for developing advanced LIBs and beyond Li-ion battery technologies. We hypothesized that two-dimensional materials with distinct surface electronic properties create conditions for ion insertion into few-layer graphene (FLG) anodes. This is because modification of the electrode/electrolyte interface potentially modifies the energetics and mechanisms of ion intercalation in the thin bulk of FLG. Through a first principles calculations; we show that the electronic, structural, and thermodynamic properties of FLG anodes can be fine-tuned by a covalent heteroatom substitution at the uppermost layer of the FLG electrode, or by interfacing FLG with a single-side fluorinated graphene or a Janus-type hydrofluorographene monolayer. When suitably interfaced with the 2D surface modifier, the FLG exhibits favorable thermodynamics for the Li+, Na+, and K+ intercalation. Remarkably, the reversible binding of Na within carbon layers becomes thermodynamically allowed and a large storage capacity can be achieved for the Na intercalated modified FLG anodes. The origin of charge-transfer promoted electronic tunability of modified FLGs are rationalized by various theoretical methods.

Funding

NSF DMR 1905803

History

Email Address of Submitting Author

mendoza@eng.famu.fsu.edu

Institution

Florida State University

Country

United States

ORCID For Submitting Author

0000-0001-5184-1406

Declaration of Conflict of Interest

N/A

Exports