These are preliminary reports that have not been peer-reviewed. They should not be regarded as conclusive, guide clinical practice/health-related behavior, or be reported in news media as established information. For more information, please see our FAQs.
2 files

Impact of Dehydroamino Acids on the Structure and Stability of Incipient 3₁₀ Helical Peptides

submitted on 10.10.2019, 23:04 and posted on 16.10.2019, 06:06 by Daniel Joaquin, Michael A. Lee, David W. Kastner, Jatinder Singh, Shardon T. Morrill, Gracie Damstedt, Steven Castle
A comparative study of the impact of small, medium-sized, and bulky Δ,Δ-dehydroamino acids (ΔAAs) on the structure and stability of Balaram’s incipient 3₁₀ -helical peptide (1) is reported. Replacement of the N-terminal Aib residue of 1 with a ΔAA afforded peptides 2a–c that maintained the 310-helical shape of 1 in solution. In contrast, installation of a ΔAA in place of Aib-3 yielded peptides 3a–c that preferred a Δ-sheet-like conformation. The impact of the ΔAA on peptide structure was independent of size, with small (ΔAla), medium-sized (Z-ΔAbu), and bulky (ΔVal) ΔAAs exerting similar effects. The proteolytic stabilities of 1 and its analogs were determined by incubation with Pronase. Z-ΔAbu and ΔVal increased the resistance of peptides to proteolysis when incorporated at the 3-position and had negligible impact on stability when placed at the 1-position, whereas ΔAla-containing peptides degraded rapidly regardless of position. Exposure of peptides 2a–c and 3a–c to the reactive thiol cysteamine revealed that ΔAla-containing peptides underwent conjugate addition at room temperature, while Z-ΔAbu- and ΔVal-containing peptides were inert even at elevated temperatures. These results suggest that both bulky and the more synthetically accessible medium-sized ΔAAs should be valuable tools for bestowing rigidity and proteolytic stability on bioactive peptides.





Email Address of Submitting Author


Brigham Young University



ORCID For Submitting Author


Declaration of Conflict of Interest

The authors declare no conflicts of interest.



Logo branding