ChemRxiv
These are preliminary reports that have not been peer-reviewed. They should not be regarded as conclusive, guide clinical practice/health-related behavior, or be reported in news media as established information. For more information, please see our FAQs.
1/1
3 files

Immobilization of Nanobodies with Vapor-Deposited Polymer Encapsulation for Robust Biosensors

preprint
submitted on 07.02.2021, 19:15 and posted on 10.02.2021, 08:39 by Ruolan Fan, Jiale Du, Kwang-Won Park, Eric Strieter, Trisha L. Andrew, Lin Hui Chang
To produce next-generation, shelf-stable biosensors for point-of-care diagnostics, a combination of rugged biomolecular recognition elements, efficient encapsulants and innocuous deposition approaches are needed. Furthermore, to ensure that the sensitivity and specificity that is inherent to biological recognition elements is maintained in solid-state biosensing systems, site-specific immobilization chemistries must be invoked such that the function of the biomolecule remains unperturbed. In this work, we present a widely-applicable strategy to develop robust solid-state biosensors using emergent nanobody (Nb) recognition elements coupled with a vapor-deposited polymer encapsulation layer. As compared to conventional immunoglobulin G (IgG) antibodies, Nbs are smaller (12-15 kDa as opposed to ~150 kDa), have higher thermal stability and pH tolerance, boast greater ease of recombinant production, and are capable of binding antigens with high affinity and specificity. Photoinitiated chemical vapor deposition (piCVD) affords thin, protective polymer barrier layers over immobilized Nb arrays that allow for retention of Nb activity and specificity after both storage under ambient conditions and complete desiccation. Most importantly, we also demonstrate that vapor-deposited polymer encapsulation of nanobody arrays enables specific detection of target proteins in complex heterogenous samples, such as unpurified cell lysate, which is otherwise challenging to achieve with bare Nb arrays.

Funding

DEFINING THE FUNCTION OF PROTEASOMAL DEUBIQUITINASES

National Institute of General Medical Sciences

Find out more...

NSF CBET1706633

History

Email Address of Submitting Author

estrieter@umass.edu

Institution

University of Massachusetts Amherst

Country

United States

ORCID For Submitting Author

0000-0003-3447-3669

Declaration of Conflict of Interest

Authors declare no conflicting interests

Exports