These are preliminary reports that have not been peer-reviewed. They should not be regarded as conclusive, guide clinical practice/health-related behavior, or be reported in news media as established information. For more information, please see our FAQs.
4 files

Identification of Small-Molecule Inhibitors of FGF23 Signaling via In Silico Hot Spot Prediction and Molecular Docking to α-Klotho

revised on 17.10.2020, 20:41 and posted on 19.10.2020, 07:58 by Shih-Hsien Liu, Zhousheng Xiao, Sambit K. Mishra, Julie C. Mitchell, Jeremy C. Smith, L. Darryl Quarles, Loukas Petridis

Fibroblast growth factor 23 (FGF23) is a therapeutic target for treating hereditary and acquired hypophosphatemic disorders, such as X-linked hypophosphatemic (XLH) rickets and tumor-induced osteomalacia (TIO), respectively. FGF23-induced hypophosphatemia is mediated by signaling through a ternary complex formed by FGF23, FGF receptor (FGFR), and α-Klotho. Currently, disorders of excess FGF23 are treated with an FGF23-blocking antibody, Burosumab. Small-molecule drugs that disrupt protein:protein interactions necessary for the ternary complex formation offer an alternative to disrupt FGF23 signaling. In this study, the FGF23:α-Klotho interface was targeted to identify small-molecule protein:protein interaction inhibitors. We computationally identified “hot spots” in the FGF23:α-Klotho interface of the ternary complex and performed in silico docking of ~5.5 million compounds from the ZINC database to the interface region of α-Klotho from the ternary crystal structure. Following docking, 23 and 18 compounds were chosen based on the lowest binding free energies to α-Klotho and the largest number of contacts with Tyr433, a predicted hot spot, respectively. 5 compounds available were assessed experimentally by their FGF23-mediated extracellular signal-regulated kinase (ERK) activities in vitro, and two of these reduce activities significantly. Both these compounds have a favorable predicted binding affinity, but not a large number of contacts with the hot spot residues. ZINC12409120 was found experimentally to reduce FGF23-mediated ERK activities by 70% and have a half maximal inhibitory concentration (IC50) of 5.0 ± 0.23 uM. ZINC12409120 exhibits contacts with residues on KL1 and KL2 domains and on the linker between the two domains of α-Klotho in in silico binding poses, thereby possibly disrupting the regular function of α-Klotho and impeding FGF23 binding. ZINC12409120 is a candidate for lead optimization.


Laboratory Directed Research and Development Program of Oak Ridge National Laboratory


Email Address of Submitting Author


Oak Ridge National Laboratory


United States

ORCID For Submitting Author


Declaration of Conflict of Interest

No conflict of interest

Version Notes

Version 2.0