These are preliminary reports that have not been peer-reviewed. They should not be regarded as conclusive, guide clinical practice/health-related behavior, or be reported in news media as established information. For more information, please see our FAQs.
6 files

Identification of Drugs Targeting Multiple Viral and Human Proteins Using Computational Analysis for Repurposing Against COVID-19

submitted on 25.05.2020, 14:43 and posted on 27.05.2020, 08:06 by Sugandh Kumar, Pratima Kumari, Geetanjali Agnihotri, Preethy VijayKumar, Shaheerah Khan, Gulam Hussain Syed, Anshuman Dixit

The SARS-CoV2 is a highly contagious pathogen that causes a respiratory disease named COVID-19. The COVID-19 was declared a pandemic by the WHO on 11th March 2020. It has affected about 5.38 million people globally (identified cases as on 24th May 2020), with an average lethality of ~3%. Unfortunately, there is no standard cure for the disease, although some drugs are under clinical trial. Thus, there is an urgent need of drugs for the treatment of COVID-19. The molecularly targeted therapies have proven their utility in various diseases such as HIV, SARS, and HCV. Therefore, a lot of efforts are being directed towards the identification of molecules that can be helpful in the management of COVID-19.

In the current studies, we have used state of the art bioinformatics techniques to screen the FDA approved drugs against thirteen SARS-CoV2 proteins in order to identify drugs for quick repurposing. The strategy was to identify potential drugs that can target multiple viral proteins simultaneously. Our strategy originates from the fact that individual viral proteins play specific role in multiple aspects of viral lifecycle such as attachment, entry, replication, morphogenesis and egress and targeting them simultaneously will have better inhibitory effect.

Additionally, we analyzed if the identified molecules can also affect the host proteins whose expression is differentially modulated during SARS-CoV2 infection. The differentially expressed genes (DEGs) were identified using analysis of NCBI-GEO data (GEO-ID: GSE-147507). A pathway and protein-protein interaction network analysis of the identified DEGs led to the identification of network hubs that may play important roles in SARS-CoV2 infection. Therefore, targeting such genes may also be a beneficial strategy to curb disease manifestation. We have identified 29 molecules that can bind to various SARS-CoV2 and human host proteins. We hope that this study will help researchers in the identification and repurposing of multipotent drugs, simultaneously targeting the several viral and host proteins, for the treatment of COVID-19.


Email Address of Submitting Author


Institute of Life Science, Nalco Square, Bhubaneswar



ORCID For Submitting Author


Declaration of Conflict of Interest

No conflict of interest