These are preliminary reports that have not been peer-reviewed. They should not be regarded as conclusive, guide clinical practice/health-related behavior, or be reported in news media as established information. For more information, please see our FAQs.
2 files

Ideal Current-voltage Characteristics and Rectification Performance of Molecular Rectifier under Single Level based Tunneling and Hopping Transport

submitted on 30.06.2020, 07:29 and posted on 01.07.2020, 10:56 by Xianneng Song, Xi Yu, Wenping Hu
In this work, we systematically studied the rectifying properties of molecular junction based on asymmetric tunneling and hopping charge transport in a single electronic state model using Landauer formula and Marcus theory. We first analyzed the asymmetric I-V characteristics and revealed distinct physical origins of the rectification under the two types of transports. We found significant difference in I-V characteristics of the two and the hopping transport can afford a much higher rectification ratio than tunneling. Next, the effect of key physical parameters on rectification performance under tunneling and hopping, like asymmetric factor, energy barrier, temperature and molecule-electrode coupling et al, were extensively evaluated, which provided a theoretical baseline for molecular diode design and performance modulation. At last, we further analyzed representative experimental results using the two models. We successfully reproduced the experimental results by adjusting the model parameters and revealed the coexistence of the tunneling and hopping processes in the ferrocene based molecular diode. The model method thus can work as powerful tool in mechanism analysis for the molecular rectification study.


Email Address of Submitting Author


Tianjin University



ORCID For Submitting Author


Declaration of Conflict of Interest

no conflict