ChemRxiv
These are preliminary reports that have not been peer-reviewed. They should not be regarded as conclusive, guide clinical practice/health-related behavior, or be reported in news media as established information. For more information, please see our FAQs.
sizeaggregationIBP_April9_2019.pdf (5.68 MB)
0/0

How Do Size and Aggregation of Ice-binding Proteins Control their Ice Nucleation Efficiency

preprint
revised on 10.04.2019 and posted on 10.04.2019 by Yuqing Qiu, Arpa Hudait, Valeria Molinero

Organisms that thrive at cold temperatures produce ice-binding proteins to manage the nucleation and growth of ice. Bacterial ice-nucleating proteins (INP) are typically large and form aggregates in the cell membrane, while insect hyperactive antifreeze proteins (AFP) are soluble and generally small. Experiments indicate that larger ice-binding proteins and their aggregates nucleate ice at warmer temperatures. Nevertheless, a quantitative understanding of how do size and aggregation of ice-binding proteins determine the temperature Thet at which proteins nucleate ice is still lacking. Here we address this question using molecular simulations and nucleation theory. The simulations indicate that the 2.5 nm long antifreeze protein TmAFP nucleates ice at 2±1 °C above the homogeneous nucleation temperature, in good agreement with recent experiments. We predict that the addition of ice-binding loops to TmAFP increases Thet until the length of the binding-site becomes ~4 times its width, beyond which Thet plateaus. We implement an accurate procedure to determine Thet of surfaces of finite size using classical nucleation theory and, after validating the theory against Thet of the proteins in molecular simulations, we use it to predict Thet of the INP of Ps. syringae as a function of the length and number of proteins in the aggregates. We conclude that assemblies with at most 34 INP already reach the Thet = -2 °C characteristic of this bacterium. Interestingly, we find that Thet is a strongly varying non-monotonic function of the distance between proteins in the aggregates. This indicates that to achieve maximum freezing efficiency, bacteria must exert exquisite, sub-angstrom control of the distance between INP in their membrane

Funding

NSF CHE-1305427

History

Email Address of Submitting Author

valeria.molinero@utah.edu

Institution

The University of Utah

Country

United States

ORCID For Submitting Author

0000-0002-8577-4675

Declaration of Conflict of Interest

none

Version Notes

2nd version - updated April 9 2019

Exports