ChemRxiv
These are preliminary reports that have not been peer-reviewed. They should not be regarded as conclusive, guide clinical practice/health-related behavior, or be reported in news media as established information. For more information, please see our FAQs.
1/1
2 files

How DNA Base Pairs Escape From the Excited-State: Antiaromaticity Relief in the Picoseconds

preprint
submitted on 03.10.2019, 20:03 and posted on 07.10.2019, 21:43 by Lucas Karas, Chia-Hua Wu, Henrik Ottosson, Judy Wu

Before the development of an ozone layer in the Archean atmosphere, the flux of UV radiation reaching Earth was suggested to be several orders of magnitude higher than it is today. For the emerging biomolecules, constant exposure to strong UV irradiation meant that useful molecules had to be resistant to UV damage and harmful photochemical reactions. From this prebiotic environment, the Watson–Crick structures of A·T and G·C base pairs survived to encode genetic information—and the photostability of these winning pairs in this specific arrangement is astonishing. Upon UV irradiation, the photoexcited canonical base pairs undergo proton-coupled electron transfer (PCET), followed by non-radiative decay, and convert internally to the electronic ground state within picoseconds. But the underlying reason why this process happens so efficiently has not been explained. Here we show that efficient photodeactivation in isolated base pairs are driven by antiaromaticity relief during PCET. According to computed nucleus independent chemical shifts, the A·T and G·C base pairs are aromatic in the electronic ground state, but the purines become highly antiaromatic in the first 1ππ* state, and PCET relieves this excited-state antiaromaticity. We found especially pronounced antiaromaticity relief for the major PCET pathway of isolated Watson–Crick A·T and G·C base pairs, when compared to alternative proton transfer routes or to PCET reactions in non-canonical pairs. Our findings suggest that excited-state deactivation of isolated base pairs are tied to sudden changes in aromaticity and antiaromaticity within the picoseconds that follow a strike of UV-light.

Funding

CHE-1751370

R35GM133548

Excited State (Anti)Aromaticity and Heavy Group 14 Element Chemistry: Fundamental Studies with Potentials for Applications

Swedish Research Council

Find out more...

History

Email Address of Submitting Author

ljkaras@uh.edu

Institution

University of Houston

Country

United States

ORCID For Submitting Author

0000-0001-7970-119X

Declaration of Conflict of Interest

no conflict of interest

Exports