These are preliminary reports that have not been peer-reviewed. They should not be regarded as conclusive, guide clinical practice/health-related behavior, or be reported in news media as established information. For more information, please see our FAQs.
2 files

Heterolytic Hydrogen Activation: Understanding Support Effects in Water-Gas Shift, Hydrodeoxygenation, and CO Oxidation Catalysis

submitted on 23.10.2019, 21:24 and posted on 25.10.2019, 20:23 by Nicholas Nelson, János Szanyi
Identifying the role of oxide supports in transition metal catalysis is critical toward our understanding of heterogeneous catalysis. The water-gas shift (WGS) reaction is a prototypical example where oxide support dictates catalytic activity, yet the cause for this remains uncertain. Herein, we show that a single descriptor—the equilibrium constant for hydroxyl formation—relates the WGS turnover frequency across disparate oxide supports. The dissimilar equilibrium constant, or oxophilicity, between early and late transition metals exemplify the utility of metal-support interfacial sites to circumvent adsorption-energy scaling restrictions, thereby providing bifunctional gains for the WGS reaction class. In relation, the equilibrium constant for hydroxyl formation is equivalent to the equilibrium constant for the formal heterolytic dissociation of hydrogen, and therefore, reflects the ability of the metal-support interface to participate in hydrogen heterolysis. The ubiquitous coexistence, yet divergent chemical behavior of homo- and heterolytically activated hydrogen renders oxide support identity central toward our understanding of hydrogenation catalysis.


Email Address of Submitting Author


Pacific Northwest National Laboratory


United States

ORCID For Submitting Author


Declaration of Conflict of Interest

no conflict of interest