Grafting of a Molecular Rhenium CO2 Reduction Catalyst onto Colloid-Imprinted Carbon

An aminophenethyl-substituted [Re(2,2’-bipyridine)(CO)3Cl] catalyst ([Re(NH2-bpy)]) was tethered to nanoporous colloid-imprinted carbon (CIC) electrode surfaces via an electrochemical oxidative grafting method. Hybrid CIC|[Re(NH2-bpy)] electrodes showed an improved stability and an increased loading per geometrical area in comparison to modified smooth glassy carbon electrodes. The catalyst also remained active upon immobilization and CO2 was selectively reduced to CO by the CIC|[Re(NH2-bpy)] electrodes in acetonitrile with a Faradaic efficiency of 92 ± 6% and a Re-based TON of approximately 900.