These are preliminary reports that have not been peer-reviewed. They should not be regarded as conclusive, guide clinical practice/health-related behavior, or be reported in news media as established information. For more information, please see our FAQs.
2 files

Glycosidic C-O Bond Activation in Cellulose Pyrolysis: Alpha Versus Beta and Condensed Phase Hydroxyl-Catalytic Scission

submitted on 12.05.2020, 20:03 and posted on 14.05.2020, 06:52 by Paul Dauenhauer, Vineet Maliekkal, Matthew Neurock
Mechanistic insights into glycosidic bond activation in cellulose pyrolysis were obtained via first principles density functional theory calculations that explain the peculiar similarity in kinetics for different stereochemical glycosidic bonds (β vs α) and establish the role of the three-dimensional hydroxyl environment around the reaction center in activation dynamics. The reported activating mechanism of the α-isomer was shown to require an initial formation of a transient C1-O2-C2 epoxide, that subsequently undergoes transformation to levoglucosan. Density functional theory results from maltose, a model compound for the α-isomer, show that the intramolecular C2 hydroxyl group favorably interacts with lone pair electrons on the ether oxygen atom of an α-glycosidic bond in a manner similar to the hydroxymethyl (C6 hydroxyl) group interacting with the lone pair electrons on the ether oxygen atom of a β glycosidic bond. This mechanism has an activation energy of 52.4 kcal/mol, which is similar to the barriers reported for non-catalytic transglycosylation mechanism (~50 kcal/mol). Subsequent constrained ab initio molecular dynamics (AIMD) simulations revealed that vicinal hydroxyl groups in the condensed environment of a reacting carbohydrate melt anchor transition states via two-to-three hydrogen bonds and lead to lower free energy barriers (~32-37 kcal mol-1) in agreement with previous experiments.


We acknowledge support from the U.S. Department of Energy, Office of Basic Energy Science Catalysis (DE-SC0016346).


Email Address of Submitting Author


University of Minnesota



ORCID For Submitting Author


Declaration of Conflict of Interest

No conflict of interest

Version Notes

Original submission - version 1.0