Global Transport of Perfluoroalkyl Acids via Sea Spray Aerosol

13 November 2018, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Perfluoroalkyl acids (PFAAs) are persistent organic pollutants found throughout the world’s oceans. Previous research suggests that long-range atmospheric transport of these substances may be substantial. However, it remains unclear what the main sources of PFAAs to the atmosphere are. We have used a laboratory sea spray chamber to study water-to-air transfer of 11 PFAAs via sea spray aerosol (SSA). We observed significant enrichment of all PFAAs relative to sodium in the SSA generated. The highest enrichment was observed in aerosols with aerodynamic diameter < 1:6 µm, which had aerosol PFAA concentrations up to ~ 62000 times higher than the PFAA water concentrations in the chamber. In surface microlayer samples collected from the sea spray chamber, the enrichment of the substances investigated was orders of magnitude smaller than the enrichment observed in the aerosols. In experiments with mixtures of structural isomers, a lower contribution of branched PFAA isomers was observed in the SML in relation to the bulk water. However, no clear trend was observed for the comparison of structural isomers in SSA and bulk water. Using the measured enrichment factors of perfluoroctanoic acid and perfluorooctance sulfonic acid versus sodium we have estimated global annual emissions of these substances to the atmosphere via SSA as well as their global annual deposition to land areas. Our experiments suggest that SSA may currently be an important source of these substances to the atmosphere and, over certain areas where SSA deposition is important, a significant source to terrestrial environments.

Keywords

PFOS
PFOA
air-sea exchange
pollutant transport

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.