ChemRxiv
These are preliminary reports that have not been peer-reviewed. They should not be regarded as conclusive, guide clinical practice/health-related behavior, or be reported in news media as established information. For more information, please see our FAQs.
1/1
2 files

General QSPR Protocol for Atomic/Inter-atomic Properties Predictions: Fragments based Graph Convolutional Neural Network (F-GCN)

preprint
submitted on 23.02.2021, 07:12 and posted on 23.02.2021, 11:27 by Peng Gao, Jie Zhang, Hongbo Qiu, Shuaifei Zhao
In this study, a general quantitative structure-property relationship (QSPR) protocol, fragments based graph convolutional neural network (F-GCN), was developed for atomic and inter-atomic properties predictions. We applied this novel artificial intelligence (AI) tool in NMR chemical shifts and bond dissociation energies (BDEs) predictions. The predicted results were comparable to experimental measurement, while the computational cost was substantially reduced, with respect to pure density functional theory (DFT) calculations. The two important features of F-GCN can be summarised as: first, it could utilise different levels of molecular fragments centered at the target chemical bonds for atomic and inter-atomic information extraction; second, the designed architecture is also open to include additional descriptors for more accurate solution of chemical environment, making itself more efficient for local properties descriptions. And during our test, the averaged prediction error of 1H NMR chemical shifts can be as small as 0.32 ppm; and the error of C-H BDEs estimations, is 2.7 kcal/mol. Moreover, we further demonstrated the applicability of this developed F-GCN model via several challenging structural assignments. The success of the F-GCN in atomic and inter-atomic predictions also indicates an essential improvement of computational chemistry with the assistance of AI tools.

History

Email Address of Submitting Author

j.chang@ecust.edu.cn

Institution

Bioland laboratory

Country

China

ORCID For Submitting Author

0000-0002-5575-303X

Declaration of Conflict of Interest

There are no conflicts of interest.

Version Notes

The first version of the manuscript.

Exports

ChemRxiv

Exports