These are preliminary reports that have not been peer-reviewed. They should not be regarded as conclusive, guide clinical practice/health-related behavior, or be reported in news media as established information. For more information, please see our FAQs.
3 files

Hierarchical Porous Carbon Arising from MOF Encapsulated Bacteria and its Energy Storage Potential

revised on 26.11.2019, 21:10 and posted on 02.12.2019, 12:46 by Shaobo Li, Xiaoshuang Zhou, Zhuo Chen, Fabian C. Herbert, Rangana Jayawickramage, Samitha D. Panangala, Michael A. Luzuriaga, Sampath B. Alahakoon, Shashini Mohottalalage, Xin Meng, Ling Fei, John P. Ferraris, Ron Smaldone, Jeremiah J. Gassensmith
Hierarchical porous carbons (HPCs) hold great promise in energy-related applications owing to their excellent chemical stability and well-developed porous structures. Attention has been drawn toward developing new synthetic strategies and precursor materials that permit greater control over composition, size, morphology, and pore structure. There is a growing trend of employing metal-organic frameworks (MOFs) as HPC precursors as their highly customizable characteristics favor new HPC syntheses. In this article, we report a biomimetically grown bacteria-templated MOF synthesis where the bacteria not only facilitate the formation of MOF nanocrystals, but also provides morphology and porosity control. The resultant HPCs show improved electrochemical capacity behavior compared to pristine MOF derived HPCs. Considering the broad availability of bacteria and ease of its production, in addition to significantly improved MOF growth efficiency on bacterial templates, we believe that bacteria-templated MOF is a promising strategy to produce a new generation of HPCs.


CAREER: Viral Capsids as Smart Nanocontainers

Directorate for Mathematical & Physical Sciences

Find out more...

Robert A. Welch Grant AT-1989-20190330


Email Address of Submitting Author


University of Texas at Dallas



ORCID For Submitting Author


Declaration of Conflict of Interest


Version Notes

The version that begins with 3 (referee feedback)