These are preliminary reports that have not been peer-reviewed. They should not be regarded as conclusive, guide clinical practice/health-related behavior, or be reported in news media as established information. For more information, please see our FAQs.
C4+C2H2-20190201.pdf (1.9 MB)

Formation Mechanism of a Nonterrestrial C6H Radical: An Ab Initio/RRKM Study on the Reaction of Tetracarbon with Acetylene

submitted on 02.02.2019 and posted on 04.02.2019 by Tong Zhu, Chih-Hao Chin, John ZH Zhang
This study examined the formation mechanisms of singlet (rhombic) and triplet (linear) C4 with acetylene by using accurate ab initio CCSD(T)/cc-pVTZ/B3LYP/6-311G(d,p) calculations, followed by a kinetic analysis of various reaction pathways and computations of relative product yields in combustion and planetary atmospheres. These calculations were combined with the Rice–Ramsperger–Kassel–Marcus (RRKM) calculations of reaction rate constants for predicting product-branching ratios, which depend on the collision energy under single-collision conditions. The results show that the initial reaction begins with the formation of an intermediate t-i2, with entrance barriers of 3.8 kcal/mol, and an intermediate s-i1 without entrance barriers. On the triplet surface, the t-i2 rearranged the other C6H2 isomers, including t-i3, t-i4, and t-i6, through hydrogen migration; the t-i2, t-i3, t-i4, t-i5, and t-i6 isomers lost a hydrogen atom, and produced the most stable linear isomer of C6H, with an overall reaction exothermicity of 11 kcal/mol. Hydrogen elimination from the t-i10 isomer led to the formation of the annular C6H isomer, HC3C3 + H, at 23.9 kcal/mol above l-C4 + C2H2. On the singlet surfaces, s-i1 rearranged the other C6H2 isomers, including s-i2 and s-i4, through carbon–carbon bond cleavage. The s-i6 and s-i11 isomers also lost a hydrogen atom, and produced the linear C6H radical. Hydrogen elimination from the s-i4 isomer led to the formation of the annular C6H isomer. The s-i5 lost a hydrogen atom, and produced the six-member ring c-C6H isomer, at 2.1 kcal/mol higher than l-C4 + C2H2. The 1,1-H2 loss from the s-i10 isomer produced the linear hexacarbon l-C6 + H2 product, with an endothermicity of 2.3 kcal/mol and a 1,1-H2 loss from the s-i11 isomer, producing in the cyclic hexacarbon c-C6 + H2 product, with an exothermicity of 11.2 kcal/mol. The product-branching ratios obtained by solving kinetic equations with individual rate constants calculated using the RRKM and VTST theories for determining the collision energies between 5 kcal/mol and 25 kcal/mol show that l-C6H + H is the dominant reaction product, whereas HC3C3 + H, l-C6 + H2, c-C6H + H, and c-C6 + H2 are minor products with branching ratios. The s-i6 isomer was calculated to be the most stable C6H2 species, even more favorable than t-i3 (by 76 kcal/mol).


National Natural Science Foundation of China (No.91641116)


Email Address of Submitting Author


East China Normal University



ORCID For Submitting Author


Declaration of Conflict of Interest

No conflict of interest.

Version Notes



Logo branding