ChemRxiv
These are preliminary reports that have not been peer-reviewed. They should not be regarded as conclusive, guide clinical practice/health-related behavior, or be reported in news media as established information. For more information, please see our FAQs.
1/1
0/0

First Principles Micro-kinetic Model of Catalytic Non-oxidative Dehydrogenation of Ethane over Close-packed Metallic Facets

preprint
revised on 20.03.2019 and posted on 20.03.2019 by Martin Hangaard Hansen, Jens K. Nørskov, Thomas Bligaard

Catalytic dehydrogenation of light alkanes may other more efficient routes to selectively producing light olefins, which are some of the most important chemical building blocks in the industry, in terms of scale. We present a descriptor based micro-kinetic model of the trends in selectivity and activity of non-oxidative dehydrogenation of ethane over close-packed metal facets and through varied reaction conditions. Our model predicts and explains the experimentally observed promotion effect on turnover rate from co-feeding hydrogen as an effect of the shifting equilibria in steady state. At low conversion reaction conditions over Pt, the path to ethene goes through ethane dehydrogenation to ethyl, CH 3 CH 2 *, then to ethene while the non-selective pathway to methane and deeply dehydrogenated species is predicted to go through dehydrogenation via CH 3 CH*. This implies that the desorption step of ethene is not the limiting step for selectivity and that geometric effects that stabilize CH 2 CH 2 * compared to CH 3 CH* are desirable properties of a better catalyst. Removing reactive bridge and 3-fold sites facilitates this, which may be achievable by sufficient concentrations of tin in platinum. The included model code furthermore provides a base for easy tuning and for expanding the study to other thermodynamic conditions, other facets, alloys or the reaction network to longer hydrocarbons or to oxidative pathways.

Funding

U.S.Department of Energy, Chemical Sciences, Geosciences, and Biosciences (CSGB) Division of the Office of Basic Energy Sciences, via Grant DE-AC02-76SF00515 to the SUNCAT Center for Interface Science and Catalysis.

History

Email Address of Submitting Author

hangaard@stanford.edu

Institution

Stanford University

Country

United States of America

ORCID For Submitting Author

0000-0003-0818-1515

Declaration of Conflict of Interest

No conflict of interest.

Exports