Filling Vacancies in a Prussian Blue Analogue Using Mechanochemical Post-Synthetic Modification

23 April 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Mechanochemical grinding of polycrystalline powders of the Prussian blue analogue (PBA) Mn[Co(CN)$_{\textbf6}$]$_{\textbf{2/3}}\boldsymbol\Box_{\textbf{1/3}}\cdot\boldmath x$H$_{\textbf 2}$O and K$_{\textbf 3}$Co(CN)$_{\textbf 6}$ consumes the latter and chemically modifies the former. A combination of inductively-coupled plasma and X-ray powder diffraction measurements suggests the hexacyanometallate vacancy fraction in this modified PBA is reduced by approximately one third under the specific conditions we explore. We infer the mechanochemically-driven incorporation of [Co(CN)$_{\textbf 6}$]$^{\textbf 3-}$ ions onto the initially-vacant sites, coupled with intercalation of charge-balancing K$^+$ ions within the PBA framework cavities. Our results offer a new methodology for the synthesis of low vacancy PBAs, unlocking novel, high capacity PBA battery materials.

Keywords

Prussian blue analogues
vacancies
mechanochemistry
post-synthetic modification

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.