ChemRxiv
These are preliminary reports that have not been peer-reviewed. They should not be regarded as conclusive, guide clinical practice/health-related behavior, or be reported in news media as established information. For more information, please see our FAQs.
1/1
0/0

Fast Response Organic Supramolecular Transistors Utilizing In-situ π-ion Gels

preprint
submitted on 05.09.2020 and posted on 07.09.2020 by Soh Kushida, Emanuel Smarsly, Irene Wacker, Yohei Yamamoto, Rasmus R. Schröder, Uwe Bunz

Despite their remarkable charge carrier mobility when forming well-ordered fibers, supramolecular transistors often suffer from poor processability that hinders device integration, resulting in disappointing transconductance and output currents. Here, a new class of supramolecular transistors, π-ion gel transistors (PIGTs), is presented. An in situ π-ion gel, which is an unprecedented composite of semiconducting nanofibers and an enclosed ionic liquid, is directly employed as an active material and internal capacitor. In comparison to other superamolecular transistors, PIGT displays a high transconductance (133 µS) and output current (139 µA at -6 V), while retaining a high charge-carrier mobility (0.16 cm2 V-1 s-1) and on/off ratio (3.7*104). Importantly, the unique device configuration and the high ionic conductivity associated with the distinct nanosegregation enable the fastest response among accumulation-mode electrochemical-based transistors (< 20 µs). Considering the advantages of the absence of dielectric layers and the facile fabrication process, PIGT has great potential to be utilized in printed flexible devices. The device platform is widely applicable to various supramolecular assemblies, shedding light on the interdisciplinary research of supramolecular chemistry and organic electronics.

Funding

Research Fellowship for Young Scientists-SPD JSPS (grant number JP20J00845)

Research Grants - Doctoral Programmes in Germany DAAD (91612715)

History

Email Address of Submitting Author

soh.kushida@gmail.com

Institution

Ruprecht-Karls-Universität Heidelberg

Country

Germany

ORCID For Submitting Author

0000-0002-4474-9529

Declaration of Conflict of Interest

no conflict of interest

Exports

Logo branding

Exports