ChemRxiv
These are preliminary reports that have not been peer-reviewed. They should not be regarded as conclusive, guide clinical practice/health-related behavior, or be reported in news media as established information. For more information, please see our FAQs.
enthalpy.pdf (5.71 MB)
0/0

Fast, Accurate Enthalpy Differences in Spin Crossover Crystals from DFT+U

preprint
submitted on 10.06.2020 and posted on 11.06.2020 by Miriam Ohlrich, Ben Powell
Spin crossover materials are bi-stable systems with potential applications as molecular scale electronic switches, actuators, thermometers, barometers and displays. However, calculating the enthalpy difference, DH, between the high spin (HS) and low spin (LS) states has been plagued with difficulties. For example, many common density functional theory (DFT) methods fail to even predict the correct sign of DH, which determines the low temperature state. Here, we study a collection of Fe(II) and Fe(III) materials, where DH has been measured, and which has previously been used to benchmark density functionals. The best performing hybrid functional, TPSSh, achieves a mean absolute error compared to experiment of 11 kJ/mol for this set of materials. However, hybrid functionals scale badly in the solid state; therefore, local functionals are preferable for studying crystalline materials, where the most interesting SCO phenomena occur. We show that both the Liechtenstein and Dudarev DFT+U methods are a little more accurate than TPSSh. The Dudarev method yields a mean absolute error of 8 kJ/mol for Ueff=1.6 eV. However, the MAE for both TPSSh and DFT+U are dominated by a single material - if this is excluded from the set then DFT+U achieves chemical accuracy. Thus, DFT+U is an attractive option for calculating the properties of spin crossover crystals, as its accuracy is comparable to that of meta-hybrid functionals, but at a much lower computational cost.

Funding

Emergent Behaviours in Spin Crossover Materials

Australian Research Council

Find out more...

History

Email Address of Submitting Author

bjpowell@gmail.com

Institution

University of Queensland

Country

Australia

ORCID For Submitting Author

0000-0002-5161-1317

Declaration of Conflict of Interest

The authors declare no conflicts of interest.

Exports