ChemRxiv
These are preliminary reports that have not been peer-reviewed. They should not be regarded as conclusive, guide clinical practice/health-related behavior, or be reported in news media as established information. For more information, please see our FAQs.
Exploring the Active Compounds of Traditional Mongolian Medicine Agsirga in Intervention of Novel Coronavirus (2019-nCoV) .pdf (1.54 MB)
0/0

Exploring the Active Compounds of Traditional Mongolian Medicine Agsirga in Intervention of Novel Coronavirus (2019-nCoV) Based on HPLC-Q-Exactive-MS/MS and Molecular Docking Method

preprint
revised on 12.03.2020 and posted on 12.03.2020 by Jie Cheng, Yuchen Tang, Baoquan Bao, Ping Zhang

Objective: To screen all compounds of Agsirga based on the HPLC-Q-Exactive high-resolution mass spectrometry and find potential inhibitors that can respond to 2019-nCoV from active compounds of Agsirga by molecular docking technology.

Methods: HPLC-Q-Exactive high-resolution mass spectrometry was adopted to identify the complex components of Mongolian medicine Agsirga, and separated by the high-resolution mass spectrometry Q-Exactive detector. Then the Orbitrap detector was used in tandem high-resolution mass spectrometry, and the related molecular and structural formula were found by using the chemsipider database and related literature, combined with precise molecular formulas (errors ≤ 5 × 10−6) , retention time, primary mass spectra, and secondary mass spectra information, The fragmentation regularities of mass spectra of these compounds were deduced. Taking ACE2 as the receptor and deduced compounds as the ligand, all of them were pretreated by discover studio, autodock and Chem3D. The molecular docking between the active ingredients and the target protein was studied by using AutoDock molecular docking software. The interaction between ligand and receptor is applied to provide a choice for screening anti-2019-nCoV drugs.

Result: Based on the fragmentation patterns of the reference compounds and consulting literature, a total of 96 major alkaloids and stilbenes were screened and identified in Agsirga by the HPLC-Q-Exactive-MS/MS method. Combining with molecular docking, a conclusion was got that there are potential active substances in Mongolian medicine Agsirga which can block the binding of ACE2 and 2019-nCoV at the molecular level.

Funding

This work was funded by National Science Foundation of China (81460651 to Baoquan Bao)

History

Email Address of Submitting Author

2017110120@stu.immu.edu.cn

Institution

College of Pharmacy, Inner Mongolia Medical University

Country

China

ORCID For Submitting Author

0000-0002-2977-8671

Declaration of Conflict of Interest

There are no conflicts of interest

Exports

Logo branding

Exports