These are preliminary reports that have not been peer-reviewed. They should not be regarded as conclusive, guide clinical practice/health-related behavior, or be reported in news media as established information. For more information, please see our FAQs.
2 files

Evolution of Metastable Structures at Bimetallic Surfaces from Microscopy and Machine-Learning Molecular Dynamics

revised on 14.06.2020, 15:27 and posted on 16.06.2020, 12:33 by Jin Soo Lim, Jonathan Vandermause, Matthijs A. van Spronsen, Albert Musaelian, Yu Xie, Lixin Sun, Christopher R. O’Connor, Tobias Egle, Nicola Molinari, Jacob Florian, Kaining Duanmu, Robert J. Madix, Philippe Sautet, Cynthia M. Friend, Boris Kozinsky
Restructuring of interfaces plays a crucial role in materials science and heterogeneous catalysis. Bimetallic systems, in particular, often adopt very different composition and morphology at surfaces compared to the bulk. For the first time, we reveal a detailed atomistic picture of long-timescale restructuring of Pd deposited on Ag, using microscopy, spectroscopy, and novel simulation methods. By developing and performing accelerated machine-learning molecular dynamics followed by an automated analysis method, we discover and characterize previously unidentified surface restructuring mechanisms in an unbiased fashion, including Pd-Ag place exchange and Ag pop-out, as well as step ascent and descent. Remarkably, layer-by-layer dissolution of Pd into Ag is always preceded by an encapsulation of Pd islands by Ag, resulting in a significant migration of Ag out of the surface and a formation of extensive vacancy pits within a period of microseconds. These metastable structures are of vital catalytic importance, as Ag-encapsulated Pd remains much more accessible to reactants than bulk-dissolved Pd. Our approach is broadly applicable to complex multimetallic systems and enables the previously intractable mechanistic investigation of restructuring dynamics at atomic resolution.


EFRC - Integrated Mesoscale Architectures for Sustainable Catalysis (IMASC, DE-SC0012573)

Robert Bosch LLC


Email Address of Submitting Author


Harvard University


United States of America

ORCID For Submitting Author


Declaration of Conflict of Interest

We declare no conflict of interest.