ChemRxiv
These are preliminary reports that have not been peer-reviewed. They should not be regarded as conclusive, guide clinical practice/health-related behavior, or be reported in news media as established information. For more information, please see our FAQs.
1/1
4 files

Estimation of Effective Parameters for the Transition-Metal Complexes by Mapping Self-Interaction Correction onto GGA+U

preprint
submitted on 12.03.2020 and posted on 12.03.2020 by Jae-Hyeon Parq
We propose a method to calculate the Hubbard U parameter in GGA+U or the α pa
rameter in the atomic self-interaction correction (ASIC) scheme for transition-metal
d orbitals by mapping the self-interaction correction (SIC) onto GGA+U, which is
suitable for atom-centered basis sets. SIC can offer a substitute for the Hubbard
U parameter in GGA+U, although its usage should be limited considering the dif
ferences between GGA+U and SIC. Approximations to reduce computational cost
for self-interaction (SI) corrected localized orbitals are deduced from the properties
of the unitary transformation in SIC and the atomic likeness of molecular orbitals
dominated by transition-metal d orbitals, and the parameters are obtained from the
approximate forms of the localized orbitals. First-row transition-metal complexes
were tested, and the results are comparable to experimental measurements and pre
vious calculations. Our method does not guarantee better results than those of
the linear response method or hybrid functionals, but mapping from SIC suppresses
overestimation of the U parameter to obtain proper geometries and energies for Fe
porphyrin-imidazole, Fe-porphyrin-CO and FeO2 modeling

Funding

No. 20168510030830

2017R1A2A1A17069511

History

Email Address of Submitting Author

parkq2@snu.ac.kr

Institution

Seoul National University

Country

Republic of Korea

ORCID For Submitting Author

0000-0002-8239-5055

Declaration of Conflict of Interest

None

Exports

Logo branding

Exports