Ester Dance Reaction on the Aromatic Ring

30 December 2019, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Aromatic rearrangement reactions are useful tools in the organic chemist’s toolbox when generating uncommon substitution patterns. However, it is difficult to precisely translocate a functional group in (hetero)arene systems, with the exception of halogen atoms in a halogen dance reaction. Herein, we describe an unprecedented “ester dance” reaction: a predictable translocation of an ester group from one carbon atom to another on an aromatic ring. Specifically, a phenyl carboxylate substituent can be shifted from one carbon to an adjacent carbon on a (hetero)aromatic ring under palladium catalysis to often give a thermodynamically favored, regioisomeric product with modest to good conversions. The obtained ester moiety can be further converted to various aromatic derivatives through the use of classic as well as state-of-the-art transformations including an amidation, acylations and decarbonylative couplings.

Keywords

Rearrangement Reactions
Aromatic Substitution
decarbonylative coupling
Palladium Catalysis
Palladium Catalysts
ligand acceleration

Supplementary materials

Title
Description
Actions
Title
SI Matsushita Ester Dance191228
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.