ChemRxiv
These are preliminary reports that have not been peer-reviewed. They should not be regarded as conclusive, guide clinical practice/health-related behavior, or be reported in news media as established information. For more information, please see our FAQs.
1/1
2 files

Establishing Design Principles for Emissive Organic SWIR Chromophores from Energy Gap Laws

preprint
submitted on 06.04.2021, 01:16 and posted on 07.04.2021, 04:46 by Hannah Friedman, Emily Cosco, Timothy Atallah, Shang Jia, Ellen Sletten, Justin Caram
Rational design of bright near and shortwave infrared (NIR: 700–1000 SWIR: 1000–2000 nm) molecular and nanoscale emitters is a fundamental scientific question with applications ranging from deep tissue imaging to new photonic materials. However, all reported organic chromophores with energy gaps in the SWIR have very low quantum yields. Is this the result of a fundamental limit for the quantum yield of organic chromophores in the SWIR? Here we combine experiment and theory to derive an energy gap quantum yield master equation (EQME), which describes the fundamental limits in SWIR quantum yields for organic chromophores in terms of energy gap laws for radiative and nonradiative decay. We parametrize EQME using experimental data from time-correlated single photon counting in the SWIR acquired using superconducting nanowire single photon detectors operating beyond the bandgap of silicon. Evaluating the photophysics of 21 polymethine NIR/SWIR emissive chromophores, we explain the precipitous decline of past 900 nm as the result of decreased radiative rates and increased nonradiative deactivation via high frequency vibrations as a function of singlet energy gap. From EQME we can compare quantum yields among NIR/SWIR chromophores while accounting for changes in energy gaps. We find that electron donating character on polymethine heterocycles results in improvements of radiative parameters obscured by a simultaneous redshift. We correlate this improvement to changes in transition dipole moments across the chromenylium polymethine family. Finally, understanding energy gap laws reveals quantitative estimates of the effect of deuteration and molecular aggregation as strategies to increase in the SWIR. We experimentally demonstrate that partial deuteration of the chromophore Flav7 results in decreased nonradiative rates and concomitant increases in quantum yield. These insights will enable optimal chromophore designs for SWIR fluorescence.

Funding

CHE-1905242

CHE-1945572

1R01EB027172

CHE-1048804

1S10OD016387

SG Fellowship

UCLA Graduate Council Diversity Fellowship

NSF GFRP DGE-1144087

Foote Family

Research Corporation Cottrell Fellowship

History

Email Address of Submitting Author

hcfriedman@ucla.edu

Institution

UCLA

Country

United States

ORCID For Submitting Author

0000-0003-1184-0876

Declaration of Conflict of Interest

No conflict of interest

Exports