Equation-of-Motion Coupled-Cluster Theory to Model L-edge X-Ray Absorption and Photoelectron Spectra

We present an extension of the equation-of-motion coupled-cluster singles and doubles (EOM-CCSD) theory for computing x-ray L-edge spectra, both in the absorption (XAS) and photoelectron (XPS) regimes. The approach is based on the perturbative evaluation of spin-orbit couplings using the Breit-Pauli Hamiltonian and nonrelativistic wave-functions described by the fc-CVS-EOM-CCSD ansatz (EOM-CCSD within the frozen-core core-valence separated (fc-CVS) scheme). The formalism is based on spinless one-particle density matrices. The approach is illustrated by modeling XAS and XPS of several model systems ranging from argon atoms to small molecules containing sulfur and silicon.