ChemRxiv
These are preliminary reports that have not been peer-reviewed. They should not be regarded as conclusive, guide clinical practice/health-related behavior, or be reported in news media as established information. For more information, please see our FAQs.
1/1

Enumeration of de novo Inorganic Complexes for Chemical Discovery and Machine Learning

preprint
submitted on 14.06.2019 and posted on 17.06.2019 by Stefan Gugler, Jon Paul Janet, Heather Kulik

Despite being attractive targets for functional materials, the discovery of transition metal complexes with high-throughput computational screening is challenged by the amount of feasible coordination numbers, spin states, or oxidation states and the potentially large sizes of ligands. To overcome these limitations, we take inspiration from organic chemistry where full enumeration of neutral, closed shell molecules under the constraint of size has enriched discovery efforts. We design monodentate and bidentate ligands from scratch for the construction of mononuclear, octahedral transition metal complexes with up to 13 heavy atoms (i.e., metal, C, N, O, P, or S). From > 11,000 theoretical ligands, we develop a heuristic score for ranking a chemically feasible 2,500 ligand subset, only 71 of which were previously included in common organic molecule databases. We characterize the top 20% of scored ligands with density functional theory (DFT) in an octahedral homoleptic ligand database (OHLDB). The OHLDB contains i) the geometry optimized structures of 1,250 homoleptic octahedral complexes obtained from the enumerated pool of ligands and an open-shell transition metal (M(II)/M(III), M = Cr, Mn, Fe, or Co), and ii) the resulting high-spin/low-spin adiabatic electronic energies (ΔEH-L) obtained with hybrid DFT. Over the OHLDB, we observe structure–property (i.e., ΔEH-L) relationships different from those expected on the basis of ligand field arguments or from our prior data sets. Finally, we demonstrate how incorporating OHLDB data into artificial neural network (ANN) training improves ANN out-of-sample performance on much larger transition metal complexes.

Funding

ONR N00014-17-1-2956

ONR N00014-18-1-2434

AAAS Marion Milligan Mason Award

BWF Career Award at the Scientific Interface

History

Email Address of Submitting Author

hjkulik@mit.edu

Institution

Massachusetts Institute of Technology

Country

USA

ORCID For Submitting Author

0000-0001-9342-0191

Declaration of Conflict of Interest

The authors declare no conflict of interest.

Exports