ChemRxiv
These are preliminary reports that have not been peer-reviewed. They should not be regarded as conclusive, guide clinical practice/health-related behavior, or be reported in news media as established information. For more information, please see our FAQs.
1/1
0/0

Ensemble Density Functional Theory Reloaded

preprint
revised on 07.09.2020 and posted on 07.09.2020 by Tim Gould, Gianluca Stefanucci, Stefano Pittalis
Density functional theory can be generalized to mixtures of ground and excited states, for the purpose of determining energies of excitations using low-cost density functional approximations. Adapting approximations originally developed for ground states to work in the new setting would fast-forward progress enormously. But, previous attempts have stumbled on daunting fundamental issues. Here we show that these issues can be prevented from the outset, by using a fluctuation dissipation theorem (FDT) to dictate key functionals. We thereby show that existing exchange energy approximations are readily adapted to excited states, when combined with a rigorous exact Hartree term that is different in form from its ground state counterpart, and counterparts based on ensemble ansatze. Applying the FDT to correlation energies also provides insights into ground state-like and ensemble-only correlations. We thus provide a comprehensive and versatile framework for ensemble density functional approximations.

History

Email Address of Submitting Author

t.gould@griffith.edu.au

Institution

Griffith University

Country

Australia

ORCID For Submitting Author

0000-0002-7191-9124

Declaration of Conflict of Interest

No conflict of interest

Exports

Logo branding

Exports