Enhanced Grain-boundary Emission Lifetime and Additive Induced Crystal Orientation in One-Step Spin-Coated Mixed Cationic (FA/MA) Lead Perovskite Thin Films Stabilized by Zinc Iodide Doping

Mixed cationic lead perovskites containing formamidinium and methylammonium can be stabilized by incorporating ZnI2 as an “internal desiccant”. Next to prolonged stability under ambient conditions we show with XRD that the use of an additive, 3-chloropropyl ammonium chloride, influences crystal formation by orienting the crystals. These ~500 nm crystals show individual photoluminescent behavior in thin films and have a longer photoluminescence lifetime at the grain boundaries as compared to the center of the crystal or relative to un-doped materials without the additive made under identical conditions. Charges recombine slower at the edges of the crystals as observed with confocal laser scanning microscopy. The material can also be prepared as a black precursor powder by a solid-solid reaction under ambient conditions.