These are preliminary reports that have not been peer-reviewed. They should not be regarded as conclusive, guide clinical practice/health-related behavior, or be reported in news media as established information. For more information, please see our FAQs.
2 files

Energetic Cost for Being “Redox-Site-Rich” in Pseudocapacitive Energy Storage with Nickel – Aluminum Layered Double Hydroxide Materials

revised on 16.04.2020, 18:16 and posted on 20.04.2020, 05:04 by Xianghui Zhang, Cody B. Cockreham, Esra Yilmaz, Gengnan Li, Nan Li, Su Ha, Liangjie Fu, Jianqing Qi, Hongwu Xu, Di Wu

Defining the energetic landscape of pseudocapacitive materials such as transition metal layered double hydroxides (LDHs) upon redox site enrichment is essential to harness their power for effective energy storage. Here, coupling acid solution calorimetry, in situ XRD, and in situ DRIFTS, we demonstrate that as the Ni/Al ratio increases, both as-made (hydrated) and dehydrated NiAl-LDH samples are less stable evidenced by their enthalpies of formation. Moreover, the higher specific capacity at intermediate Ni/Al ratio of 3 is enabled by effective water – LDH interactions, which energetically stabilizes the excessive near-surface Ni redox sites, solvates intercalated carbonate ions, and fills the expanded vdW gap, paying for the “energetic cost” of being “redox site rich”. Thus, from a thermodynamic perspective, engineering molecule/solids – LDH interactions on the nanoscale with confined guest species other than water, which energetically impose stronger stabilization, may help us to achieve their specific capacitance potential.


Email Address of Submitting Author


Washington State University


United States

ORCID For Submitting Author


Declaration of Conflict of Interest