ChemRxiv
These are preliminary reports that have not been peer-reviewed. They should not be regarded as conclusive, guide clinical practice/health-related behavior, or be reported in news media as established information. For more information, please see our FAQs.
1/1
2 files

Emergence of Cooperative Rotor Dynamics in Metal–organic Frameworks via Tuned Steric Interactions

preprint
revised on 22.09.2020 and posted on 22.09.2020 by Adrian Gonzalez-Nelson, Srinidhi Mula, Mantas Simenas, Sergejus Balčiūnas, Adam R. Altenhof, Cameron S. Vojvodin, Jūras Banys, Robert W. Schurko, François-Xavier Coudert, Monique van der Veen
The organic components in metal-organic frameworks (MOFs) enjoy a unique situation: they are embedded in a crystalline lattice, yet, as they are separated from each other by tunable free space, a large variety of dynamic behavior can emerge. These rotational dynamics of the organic linkers are especially important due to their influence over properties such as gas adsorption and kinetics of guest release. In order to fully exploit linker rotation, it is necessary to engineer correlated linker dynamics to achieve their cooperative functional motion. Here, we show that for MIL-53, a topology with closely spaced rotors, the phenylene functionalization allows to tune the rotors’ steric environment, shifting linker rotation from completely static to rapid motions at frequencies above 100 MHz. For steric interactions that start to inhibit independent rotor motion, we identify for the first time the emergence of correlated rotation modes in linker dynamics. These findings pave the way for function-specific engineering of gearlike cooperative motion in MOFs.

Funding

DPI, NEWPOL project 731.015.506

European Research Council grant number 759212

National Science Foundation Cooperative Agreement (DMR-1644779)

NSERC Discovery Grant (RGPIN-2016_06642)

Agence Nationale de la Recherche under project MATAREB (ANR-18-CE29-0009-01)

GENCI grant A0070807069

History

Email Address of Submitting Author

a.m.gonzaleznelson@tudelft.nl

Institution

Delft University of Technology

Country

The Netherlands

ORCID For Submitting Author

0000-0003-2104-3870

Declaration of Conflict of Interest

No conflict of interest

Exports