These are preliminary reports that have not been peer-reviewed. They should not be regarded as conclusive, guide clinical practice/health-related behavior, or be reported in news media as established information. For more information, please see our FAQs.
2 files

Embedded Microbubbles for Acoustic Manipulation of Single Cells and Microfluidic Applications

submitted on 20.03.2021, 06:48 and posted on 22.03.2021, 13:24 by Nino Läubli, Michael Gerlt, Alexander Wüthrich, Renard Lewis, Naveen Shamsudhin, Ulrike Kutay, Daniel Ahmed, Jürg Dual, Bradley J. Nelson
Acoustically excited microstructures have demonstrated significant potential for small scale biomedical applications by overcoming major microfluidic limitations. Recently, the application of oscillating microbubbles has demonstrated their superiority over acoustically excited solid structures due to their enhanced acoustic streaming at low input power. However, their limited temporal stability hinders their direct applicability for industrial or clinical purposes. Here, we introduce the embedded microbubble, a novel acoustofluidic design based on the combination of solid structures (polydimethylsiloxane) and microbubbles (air-filled cavity) to combine benefits of both approaches while minimizing their drawbacks. We investigate the influence of various design parameters and geometrical features through numerical simulations and experimentally evaluate their manipulation capabilities. Finally, we demonstrate the capabilities of our design for microfluidic applications by investigating its mixing performance as well as through the controlled rotational manipulation of individual HeLa cells.


Swiss National Science Foundation (CR22I2_166110)

Swiss National Science Foundation (310030_184801)

ETH Zurich Career Seed Grant - 14 17 - 2


Email Address of Submitting Author


ETH Zurich



ORCID For Submitting Author


Declaration of Conflict of Interest

The authors declare that there is no conflict of interest.

Version Notes

Submitted version 1.0