These are preliminary reports that have not been peer-reviewed. They should not be regarded as conclusive, guide clinical practice/health-related behavior, or be reported in news media as established information. For more information, please see our FAQs.
2 files

Electronics Communication and Photoinduced Intramolecular Electron Transfer in Hybrid Ru(II)-Re(I) Complexes Using Eigenstate-Based and Diabatic-State-Based Models

revised on 04.04.2021, 08:18 and posted on 05.04.2021, 13:07 by Rangsiman Ketkaew
Photoinduced intramolecular electron transfer (PIET) plays a vital role in the efficiency of electronics communication in transition metal complexes catalysing oxidation-reduction reaction. In this work, we theoretically calculate the rate of electron transfer(ET) in Ru(II)-BL-Ru(I) hybrid complexes; where BL is bridging ligand. A brief concept of ET in the basis of Marcus theory, which is extended to address a variety of different type of ET, is provided. We show that, in the case of Ru(II)-BL-Ru(I) complex, ET involves a non-adiabatic state which thanks to a fast electronics communication between donor and acceptor connected by BL and becomes rigid complex. Single electron transferring in Ru(II)-BL-Ru(I) complex governed by PIET constructed by potential energy curve as change of structural transformation over time-evolution. We also investigate the mechanism of PIET involving a redox reaction in excited state, wherein the oxidation state of Ru(II) (donor) and Ru(I) (acceptor) changes. To access non-adiabatic state of Ru(II)-BL-Ru(I), we use constrained density functional theory to allow ground state calculation to be performed along with geometry constraints. We also systematically study the role of distance of donor-acceptor separation on kinetics of PIET


Email Address of Submitting Author


Thammasat University



ORCID For Submitting Author


Declaration of Conflict of Interest

No conflict of interest

Version Notes

The second revision. Add supporting information and revised manuscript.