ChemRxiv
These are preliminary reports that have not been peer-reviewed. They should not be regarded as conclusive, guide clinical practice/health-related behavior, or be reported in news media as established information. For more information, please see our FAQs.
1/1
2 files

Electrochemical Characterisations to Elucidate the Pseudocapacitance Mechanisms of a CdS/WOx Nanocomposite Photoanode in Acidic Aqueous Electrolytes

preprint
submitted on 08.01.2021, 16:44 and posted on 11.01.2021, 12:28 by Daniel Jones, Charles W. Dunnill

The electrochemical properties of a cadmium sulphide/tungsten(VI) sub-oxide (CdS/WOx) nanocomposite have been explored using aqueous solutions of acetic acid (pH 2.2) and acidified sodium acetate (pH 5.0), for the purpose of evaluating the origin of pseudocapacitance within the material. Through transient photocurrent response, galvanostatic charge/discharge and electrochemical impedance measurements, it was established that cation-intercalation phenomena were principally responsible for charge-accumulation in the composite and that the incorporation of ionic species into interstitial surface sites was more energetically favourable for protons than for sodium ions. The composite displayed promising capacitive performance in the tested electrolytes, exhibiting Coulombic efficiencies of up to 88% under galvanostatic cycling at 1.0 mA cm-2 alongside a peak differential capacitance value of 560 mF cm-2 during the discharge phase. From electrochemical impedance spectroscopy data it was further determined that whilst illumination by white light acted to decrease the series resistance of the photoanode, all other resistive and capacitive components of the impedance characteristics were affected negligibly by the irradiation. In combination, the investigations detailed herein provide an instructive resource for the development of CdS/WOx composites and the optimisation of electrolytes to improve the performance and chemical stability of such materials. Furthermore, the study serves as a potential foundation from which to advance the concept of integrating the conversion and storage of solar energy into a single dual-functional electrode, in turn facilitating a new generation of photo-supercapacitor devices.

History

Email Address of Submitting Author

D.R.Jones@swansea.ac.uk

Institution

Swansea University

Country

United Kingdom

ORCID For Submitting Author

0000-0002-4889-9153

Declaration of Conflict of Interest

No conflicts of interest.

Exports