Diversity Focused Semisyntheses of Tetronate Polyether Ionophores

21 June 2019, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

The polyether ionophores are complex natural products capable of transporting cations across biological membranes. Many family members possess highly potent antimicrobial activity and a few selected compounds have ability to target particularly aggressive cancer cells. Despite these interesting perspectives, a detailed understanding of the cellular mode-of-action of polyether ionophores is generally lacking. In principle, broad mapping of structure-activity relationships across several biological activities could provide mechanistic insights as well as identification of lead structures but access to structural diversity within the overall class is synthetically very challenging. In this manuscript, we demonstrate that novel polyether ionophores can be constructed by recycling components of highly abundant polyethers. We provide the first examples of synthetically incorporating halogen-functionalized tetronic acids as cation-binding groups into polyether ionophores and we identify analogs with strong anti-bacterial activity and minimal effects on mammalian cells.

Keywords

Natural Product Synthesis
diversity oriented synthesis
polyether ionophore antibiotic
cell painting

Supplementary materials

Title
Description
Actions
Title
SI
Description
Actions
Title
NMR spectra
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.