These are preliminary reports that have not been peer-reviewed. They should not be regarded as conclusive, guide clinical practice/health-related behavior, or be reported in news media as established information. For more information, please see our FAQs.
2 files

Discovery of New Hydroxyethylamine Analogs Against 3CLpro Protein Target of SARS-CoV-2: Molecular Docking, Molecular Dynamics Simulation and Structure-Activity Relationship Studies

submitted on 04.04.2020, 06:45 and posted on 06.04.2020, 11:23 by Sumit Kumar, Prem Prakash Sharma, Uma Shankar, Dhruv Kumar, Sanjeev K Joshi, Lindomar Pena, Ravi Durvasula, Amit Kumar, Prakasha Kempaiah, Poonam ., Brijesh Rathi

A novel coronavirus, SARS-CoV-2 has caused a recent pandemic called COVID-19 and a severe health threat around the world. In the current situation, the virus is rapidly spreading worldwide, and the discovery of vaccine and potential therapeutics are critically essential. The crystal structure for main protease (Mpro) of SARS-CoV-2, 3-chymotrypsin-like cysteine protease (3CLpro) was recently made available and is considerably similar to previously reported SARS-CoV. Due to its essentiality in viral replication, it represents a potential drug target. Herein, computer-aided drug design (CADD) approach was implemented for the initial screening of 13 approved antiviral drugs. Molecular docking of 13 antivirals against 3-chymotrypsin-like cysteine protease (3CLpro) enzyme was accomplished and indinavir was described as a lead drug with a docking score of -8.824 and a XP Gscore of -9.466 kcal/mol. Indinavir possesses an important pharmacophore, hydroxyethylamine (HEA), and thus a new library of HEA compounds (>2500) was subjected to virtual screening that led to 25 hits with a docking score more than indinavir. Exclusively, compound 16 with docking score of -8.955 adhered to drug like parameters, and the Structure-Activity Relationship (SAR) analysis was demonstrated to highlight the importance of chemical scaffolds therein. Molecular Dynamics (MD) simulation studies carried out at 100ns supported the stability of 16 within the binding pocket. Largly, our results supported that this novel compound 16 binds to the domain I & II, and domain II-III linker of 3CLpro protein, suggesting its suitablity as strong candidate for therapeutic discovery against COVID-19. Lead compound 16 could pave incredible directions for the design of novel 3CLpro inhibitors and ultimately therapeutics against COVID-19 disease.


Email Address of Submitting Author


Hansraj College, University of Delhi



ORCID For Submitting Author


Declaration of Conflict of Interest

Authors declare no conflict of interest