These are preliminary reports that have not been peer-reviewed. They should not be regarded as conclusive, guide clinical practice/health-related behavior, or be reported in news media as established information. For more information, please see our FAQs.
Discovery of calcium-metal alloy anodes for reversible Ca-ion batteries.pdf (2.01 MB)

Discovery of Calcium-Metal Alloy Anodes for Reversible Ca-Ion Batteries

submitted on 25.10.2018, 21:53 and posted on 29.10.2018, 14:25 by Zhenpeng Yao, Vinay I. Hegde, Alan Aspuru-Guzik, Christopher Wolverton
Ca-ion batteries (CIBs) show promise to achieve the high energy density required by emerging applications like electric vehicles because of their potentially improved capacities and high operating voltages. The development of CIBs has been hindered by the failure of traditional graphite and calcium metal anodes due to the intercalation difficulty and lacking efficient electrolyte. Recently a high voltage (4.45 V) CIB cell using Sn as the anode was reported achieving a remarkable cyclability (> 300 cycles). The calciation of Sn was observed to end at Ca7Sn6, which is surprising, since higher Ca-content compounds are known (e.g. Ca2Sn). Here, we investigate computationally the Sn electrochemical calciation reaction process and explore the reaction driving force as a function of Ca content using density functional theory (DFT) calculations. This exploration allows us to identify threshold voltages which govern the limits of the calciation process. We then use this information to design a four-step screening strategy and use high-throughput DFT to search for anode materials with higher properties. We predict that many metalloids (Si, Sb, Ge), (post-)transition metals (Al, Pb, Cu, Cd, CdCu2) are promising inexpensive anode candidates and warrant further experimental investigations.


Email Address of Submitting Author


Harvard University



ORCID For Submitting Author


Declaration of Conflict of Interest

All authors declare that they have no competing interests.


Read the published paper

in Advanced Energy Materials