Directed Evolution of P450 Fatty Acid Decarboxylases via High-Throughput Screening Towards Improved Catalytic Activity

11 September 2019, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

P450 fatty acid decarboxylases (FADCs) have recently been attracting considerable attention owing to their one-step direct production of industrially important 1-alkenes from biologically abundant feedstock free fatty acids under mild conditions. However, attempts to improve the catalytic activity of FADCs have met with little success. Protein engineering has been limited to selected residues and small mutant libraries due to lack of an effective high-throughput screening (HTS) method. Here, we devise a catalase-deficient Escherichia coli host strain and report an HTS approach based on colorimetric detection of H2O2-consumption activity of FADCs. Directed evolution enabled by this method has led to effective identification for the first time of improved FADC variants for medium-chain 1-alkene production from both DNA shuffling and random mutagenesis libraries. Advantageously, this screening method can be extended to other enzymes that stoichiometrically utilize H2O2 as co-substrate.

Keywords

Directed evolution
High-throughput screening
H2O2: Hydrogen peroxide
P450 fatty acid decarboxylases
1-Alkenes

Supplementary materials

Title
Description
Actions
Title
P450 FADCs HTS ChemCatChem-SI
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.