ChemRxiv
These are preliminary reports that have not been peer-reviewed. They should not be regarded as conclusive, guide clinical practice/health-related behavior, or be reported in news media as established information. For more information, please see our FAQs.
1/1
3 files
0/0

Development of a Protein-Ligand Extended Connectivity (PLEC) Fingerprint and Its Application for Binding Affinity Predictions.

preprint
submitted on 27.02.2018 and posted on 28.02.2018 by Maciej Wójcikowski, Michał Kukiełka, Marta Stepniewska-Dziubinska, Pawel Siedlecki
Fingerprints (FPs) are the most common small molecule representation in cheminformatics. There are a wide variety of fingerprints, and the Extended Connectivity Fingerprint (ECFP) is one of the best-suited for general applications. Despite the overall FP abundance, only a few FPs represent the 3D structure of the molecule, and hardly any encode protein-ligand interactions. Here, we present a Protein-Ligand Extended Connectivity (PLEC) fingerprint that implicitly encodes protein-ligand interactions by pairing the ECFP environments from the ligand and the protein. PLEC fingerprints were used to construct different machine learning (ML) models tailored for predicting protein-ligand affinities (pKi/d). Even the simplest linear model built on the PLEC fingerprint achieved Rp=0.83 on the PDBbind v2016 "core set”, demonstrating its descriptive power. The PLEC fingerprint has been implemented in the Open Drug Discovery Toolkit (https://github.com/oddt/oddt).

History

Email Address of Submitting Author

mwojcikowski@ibb.waw.pl

Email Address(es) for Other Author(s)

martasd@ibb.waw.pl pawel@ibb.waw.pl

Institution

Insitute of Biochemistry and Biophysics, PAS

Country

Poland

ORCID For Submitting Author

0000-0003-1722-6797

Declaration of Conflict of Interest

Authors declare no competing interest.

Exports

Read the published paper

in Bioinformatics

Logo branding

Exports