These are preliminary reports that have not been peer-reviewed. They should not be regarded as conclusive, guide clinical practice/health-related behavior, or be reported in news media as established information. For more information, please see our FAQs.
8 files

Detection and Characterization of Mononuclear Pd(I) Complexes

submitted on 12.06.2020, 04:21 and posted on 15.06.2020, 08:11 by Jia Luo, Nigam P. Rath, Liviu M. Mirica

Palladium is a versatile transition metal used to catalyze a large number of chemical transformations, largely due to its ability to access various oxidation states (0, I, II, III, and IV). Among these oxidation states, Pd(I) is arguably the least studied, and while dinuclear Pd(I) complexes are more common, mononuclear Pd(I) species are very rare. Reported herein are spectroscopic studies of a series of Pd(I) intermediates generated by the chemical reduction of Pd(II) precursors supported by the tetradentate ligands 2,11-dithia[3.3](2,6)pyridinophane (N2S2) and N,N’-di-tert-butyl-2,11-diaza[3.3](2,6)pyridinophane (tBuN4): [(N2S2)PdII(MeCN)]2(OTf)4 (1), [(N2S2)PdIIMe]2(OTf)2 (2), [(N2S2)PdIICl](OTf) (3), [(N2S2)PdIIX](OTf)2 (X = tBuNC 4, PPh3 5), [(N2S2)PdIIMe(PPh3)](OTf) (6), and [(tBuN4)PdIIX2](OTf)2 (X = MeCN 8, tBuNC 9). In addition, a stable Pd(I) dinuclear species, [(N2S2)PdI(m-tBuNC)]2(ClO4)2 (7), was isolated upon the electrochemical reduction of 4 and structurally characterized. Moreover, the (tBuN4)PdI intermediates, formed from the chemical reduction of [(tBuN4)PdIIX2](OTf)2 (X = MeCN 8, tBuNC 9) complexes, were investigated by EPR spectroscopy, X-ray absorption spectroscopy (XAS), and DFT calculations, and compared with the analogous (N2S2)PdI systems. Upon probing the stability of Pd(I) species under various ligand environments (N2S2 and tBuN4), it is apparent that the presence of soft ligands such as tBuNC and PPh3 significantly improves the stability of Pd(I) species, which should make the isolation of mononuclear Pd(I) species possible.


DOE BES DE-SC0006862


Email Address of Submitting Author


University of Illinois at Urbana-Champaign


United States

ORCID For Submitting Author


Declaration of Conflict of Interest

No conflict of interest

Version Notes

Version 1.0